首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.  相似文献   

3.
Two novel phosphoenolpyruvate carboxylase (PEPC) isoforms have been biochemically characterized from endosperm of developing castor oil seeds (COS). The association of a 107 kDa PEPC subunit (p107) with an immunologically unrelated bacterial PEPC-type 64 kDa polypeptide leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. COS p107 is quite susceptible to limited proteolysis during PEPC purification. An endogenous asparaginyl endopeptidase appears to catalyze the in vitro cleavage of an approximately 120 amino acid polypeptide from the N-terminal end of p107, producing a truncated 98 kDa polypeptide (p98). Immunoblotting was used to estimate proteolytic activity by following the disappearance of p107 and concomitant appearance of p98 during incubation of clarified COS extracts at 4 degrees C. The in vitro proteolysis of p107 to p98 only occurred in the combined presence of 2 mM dithiothreitol and high salt concentrations (particularly SO(4) (2-) and PO(4) (2-) salts). Although p107-degrading activity was present throughout COS development, it was most pronounced in endosperm extracts from older beans. Several protease inhibitors, including two commercially available protease inhibitor cocktails, were tested for their ability to prevent p107 proteolysis. All of the inhibitors were ineffective except for 2,2'-dipyridyl disulfide (DPDS), a relatively inexpensive and underutilized active site inhibitor of plant thiol proteases. Asparaginyl endopeptidase activity of COS extracts was unaffected by 20% (NH(4))(2)SO(4) when determined in the presence or absence of 2 mM dithiothreitol using a spectrophotometric assay based upon the hydrolysis of benzoyl-L-Asn-p-nitroanilide. Thus, we propose that the combined presence of 2 mM dithiothreitol and 20% (NH(4))(2)SO(4) promotes a p107 conformational change that exposes the N-terminal region asparaginyl residue where p107 hydrolysis is believed to occur.  相似文献   

4.
5.
Our previous research characterized two phosphoenolpyruvate (PEP) carboxylase (PEPC) isoforms (PEPC1 and PEPC2) from developing castor oil seeds (COS). The association of a shared 107-kD subunit (p107) with an immunologically unrelated bacterial PEPC-type 64-kD polypeptide (p64) leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. Here, we describe the production of antiphosphorylation site-specific antibodies to the conserved p107 N-terminal serine-6 phosphorylation site. Immunoblotting established that the serine-6 of p107 is phosphorylated in COS PEPC1 and PEPC2. This phosphorylation was reversed in vitro following incubation of clarified COS extracts or purified PEPC1 or PEPC2 with mammalian protein phosphatase type 2A and is not involved in a potential PEPC1 and PEPC2 interconversion. Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its K(m)(PEP) and sensitivity to L-malate inhibition, while enhancing glucose-6-P activation. By contrast, p107 phosphorylation increased PEPC2's K(m)(PEP) and sensitivity to malate, glutamic acid, and aspartic acid inhibition. Phosphorylation of p107 was promoted during COS development (coincident with a >5-fold increase in the I(50) [malate] value for total PEPC activity in desalted extracts) but disappeared during COS desiccation. The p107 of stage VII COS became fully dephosphorylated in planta 48 h following excision of COS pods or following 72 h of dark treatment of intact plants. The in vivo phosphorylation status of p107 appears to be modulated by photosynthate recently translocated from source leaves into developing COS.  相似文献   

6.
Ion filtration chromatography on diethylaminoethyl-Sephadex A-25 has been used to separate two isozymes each of triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, enolase, and phosphoglycerate mutase from homogenates of developing castor oil (Ricinus communis L. cv. Baker 296) seeds. Crude plastid fractions, prepared by differential centrifugation, were enriched in one of the isozymes, whereas the cytosolic fractions were enriched in the other. These data (and data published previously) indicate that plastids from developing castor oil seeds have a complete glycolytic pathway and are capable of conversion of hexose phosphate to pyruvate for fatty acid synthesis. The enzymes of this pathway in the plastids are isozymes of the corresponding enzymes located in the cytosol.  相似文献   

7.
Dalziel KJ  O'Leary B  Brikis C  Rao SK  She YM  Cyr T  Plaxton WC 《FEBS letters》2012,586(7):1049-1054
Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate-metabolism. In developing castor oil seeds (COS) a novel allosterically-densensitized 910-kDa Class-2 PEPC hetero-octameric complex arises from a tight interaction between 107-kDa plant-type PEPC and 118-kDa bacterial-type PEPC (BTPC) subunits. Mass spectrometry and immunoblotting with anti-phosphoSer451 specific antibodies established that COS BTPC is in vivo phosphorylated at Ser451, a highly conserved target residue that occurs within an intrinsically disordered region. This phosphorylation was enhanced during COS development or in response to depodding. Kinetic characterization of a phosphomimetic (S451D) mutant indicated that Ser451 phosphorylation inhibits the catalytic activity of BTPC subunits within the Class-2 PEPC complex.  相似文献   

8.
Kinetic and binding studies were carried out on substrate and cofactor interaction with the pyruvate dehydrogenase complex from bovine heart. Fluoropyruvate and pyruvamide, previously described as irreversible and allosteric inhibitors, respectively, are strong competitive inhibitors with respect to pyruvate. Binding of thiamin diphosphate was used to study differences between the active dephosphorylated and inactive phosphorylated enzyme states by spectroscopic methods. The change in both the intrinsic tryptophan fluorescence and the fluorescence of the 6-bromoacetyl-2-dimethylaminonaphthalene-labelled enzyme complex produced on addition of the cofactor showed similar binding behaviour for both enzyme forms, with slightly higher affinity for the phosphorylated form. Changes in the CD spectrum, especially the negative Cotton effect at 330 nm as a function of cofactor concentration, both in the absence and presence of pyruvate, also revealed no drastic differences between the two enzyme forms. Thus, inactivation of the enzyme activity of the pyruvate dehydrogenase complex is not caused by impeding the binding of substrate or cofactor.  相似文献   

9.
10.
11.
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate metabolism. Two distinct oligomeric PEPC classes were discovered in developing COS (castor oil seeds). Class-1 PEPC is a typical homotetramer of 107?kDa PTPC (plant-type PEPC) subunits, whereas the novel 910-kDa Class-2 PEPC hetero-octamer arises from a tight interaction between Class-1 PEPC and 118?kDa BTPC (bacterial-type PEPC) subunits. Mass spectrometric analysis of immunopurified COS BTPC indicated that it is subject to in vivo proline-directed phosphorylation at Ser425. We show that immunoblots probed with phosphorylation site-specific antibodies demonstrated that Ser425 phosphorylation is promoted during COS development, becoming maximal at stage IX (maturation phase) or in response to depodding. Kinetic analyses of a recombinant, chimaeric Class-2 PEPC containing phosphomimetic BTPC mutant subunits (S425D) indicated that Ser425 phosphorylation results in significant BTPC inhibition by: (i) increasing its Km(PEP) 3-fold, (ii) reducing its I50 (L-malate and L-aspartate) values by 4.5- and 2.5-fold respectively, while (iii) decreasing its activity within the physiological pH range. The developmental pattern and kinetic influence of Ser425 BTPC phosphorylation is very distinct from the in vivo phosphorylation/activation of COS Class-1 PEPC's PTPC subunits at Ser11. Collectively, the results establish that BTPC's phospho-Ser425 content depends upon COS developmental and physiological status and that Ser425 phosphorylation attenuates the catalytic activity of BTPC subunits within a Class-2 PEPC complex. To the best of our knowledge, this study provides the first evidence for protein phosphorylation as a mechanism for the in vivo control of vascular plant BTPC activity.  相似文献   

12.
Leucoplast pyruvate kinase from endosperm of developing castor oil seeds (Ricinus communis L.; cv Baker) has been purified 1370-fold to a specific activity of 41.1 micromoles pyruvate produced per minute per milligram protein. Nondenaturing polyacrylamide gel electrophoresis of the purified enzyme resulted in a single protein staining band that co-migrated with pyruvate kinase activity. However, following sodium dodecyl sulfate polyacrylamide electrophoresis, two major protein staining bands of 57.5 and 44 kilodaltons, which occurred in an approximate 2:1 ratio, respectively, were observed. The native molecular mass was approximately 305 kilodaltons. Rabbit antiserum raised against the final enzyme preparation effectively immunoprecipitated leucoplast pyruvate kinase. The 57.5- and 44-kilodalton polypeptides are immunologically related as both proteins cross-reacted strongly on Western blots probed with the rabbit anti-(developing castor seed endosperm leucoplast pyruvate kinase) immunoglobulin that had been affinity-purified against the 57.5-kilodalton polypeptide. In contrast, pyruvate kinases from the following sources showed no immunological cross-reactivity with the same immunoglobulin: the cytosolic enzyme from developing or germinating castor bean endosperm; chloroplastic pyruvate kinase from expanding leaves of the castor oil plant; chloroplastic or cytosolic pyruvate kinase from the green alga, Selenastrum minutum; and mammalian or bacterial pyruvate kinases.  相似文献   

13.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

14.
Monospecific polyclonal antibodies against maize leaf phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were utilized to examine the subunit composition and developmental profile of endosperm PEPC in developing and germinating castor oil seeds (Ricinus communis L. cv Baker 296). PEPC from developing endosperm consists of a single type of 100-kilodalton subunit, whereas the enzyme from 2- to 5-day germinated endosperm appears to contain equal proportions of immunologically related 103- and 108-kilodalton subunits. The maximal activity of PEPC in developing endosperms (2.67 micromoles oxaloacetate produced per minute per gram fresh weight) is approximately 20-fold and threefold greater than that of fully mature (dry seed) and germinating endosperms, respectively. The most significant increase in the activity and concentration of endosperm PEPC occurs during the middle cotyledon to full cotyledon stage of seed development; this period coincides with the most active phase of storage oil accumulation by ripening castor oil seeds. The data are compatible with the recent proposal (RG Smith, DA Gauthier, DT Dennis, DH Turpin [1992] Plant Physiol 1233-1238) that PEPC plays a fundamental role in vivo in the cytosolic production of an important substrate (malate) for fatty acid biosynthesis by developing castor oil seed leucoplasts. Immediately following seed imbibition, PEPC activity and concentration increase in parallel, with the greatest levels attained by the third day of germination. It is suggested that during this early phase of seed germination PEPC has a critical function to build up cellular dicarboxylic acid pools required to initiate significant activities of both the tricarboxylic acid and glyoxylate cycles.  相似文献   

15.
We have shown that the active form of the pyruvate dehydrogenase (PDHa) component exhibits at least a 9-fold greater affinity for sites on the dihydrolipoyl transacetylase core of the pyruvate dehydrogenase complex than does the inactive (phosphorylated) form of pyruvate dehydrogenase (PDHb). Consistent with a higher rate of dissociation for PDHb than for PDHa, free PDHa rapidly replaces PDHb whereas, even at high levels, free PDHb only slowly replaces PDHa. Dissociation of newly formed PDHb, during phosphorylation by the immobile PDHa kinase, leads to an increased association of free PDHa as observed by protection against inactivation of the complex, even though PDHa kinase activity is increased.  相似文献   

16.
A spectrophotometric assay was devised to characterize the asparaginyl (Asn) endopeptidase activity from the endosperm of castor oil seeds. (Ricinus communis L. var. Baker 296). The assay measures the release of p-nitroaniline from the hydrolysis of benzoyl-l-Asn-p-nitroanilide. Assay sensitivity was improved through diazotization of the reaction product with N(]-napthy])-ethylenediamine dihydrochloride: diazotized p-nitroaniline was determined spectrophotometrically at 548 nm (?548= 1.64 × 10?1M?1 cm?2). By using this assay. Asn endopeptidase activity was detected in endosperm extracts of developing, mature and germinating castor seeds. Comparison of the Asn endopeptidase activities of developing and germinating castor endosperms revealed that they: 1) have identical pH-activity profiles with optimal activity occuring at pH 5.4: 2) are heat-labile proteins displaying comparable thermal stability profiles, and 3) are activated and inhibited by dithiothreitol and thiol modifying reagents, respectively. Thus, the Asn endopeptidases of developing and germinating castor seeds are very similar, if not identical, cysteine proteases. The most significant increase in the activity of endosperm Asn endopeptidase occurs during the full coryledon to maturation stage of seed development, this period coincides with the most active phase of reserve protein accumulation by ripening castor oil seeds. Asn endopeptidase activity of fully mature (dry) castor seeds was about 2-fold lower than that of muturation stage ripening castor oil seed. Asn endopeptidase activity showed a slight reduction over the inicial 2-day period following seed imbibition, and then rapidly decreased over the next several days of germination. The results are compatible with the proposal that Asn endopeptidase functions both to process storage preproteins following their import into protein bodies of developing seeds, as well as to participate in the mobilization of storage proteins during the early phase of seed germination.  相似文献   

17.
De Luca V  Dennis DT 《Plant physiology》1978,61(6):1037-1039
Proplastids from developing castor bean (Ricinus communis) endosperm have a pyruvate kinase activity which is extremely unstable on isolation from the organelle. It can be stabilized by 20 mm 2-mercaptoethanol in 20% ethylene glycol. In contrast the soluble pyruvate kinase is stable at 60 C for 10 minutes. The two activities have different pH optima. The soluble and the proplastid activities are eluted from a diethylaminoethyl-Sephadex A-25 sievorptive column at different ionic strengths.  相似文献   

18.
19.
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue.  相似文献   

20.
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from mature maize seeds (Zea mays L.) was purified to homogeneity and a final specific activity of 13.3 μmol min−1 mg−1. Purified PEPC was treated with phosphatase from bovine intestinal mucosa or protein kinase A to study its apparent phosphorylation level. Kinetic parameters of the enzyme reaction catalyzed by phosphorylated and dephosphorylated forms under different conditions were compared, as well as an effect of modulators. The enzyme dephosphorylation resulted in the change of hyperbolic kinetics to the sigmoidal one (with respect to PEP), following with the decrease of maximal reaction rate and the increase of sensitivity to l-malate inhibition. The hyperbolic kinetics of native PEPC present in dry maize seeds was not changed after the protein kinase A treatment, while it was converted to the sigmoidal one after dephosphorylation. Level of PEPC phosphorylation was not affected during seed imbibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号