首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We describe the structure and function of psychrophilic alanine racemases from Bacillus psychrosaccharolyticus and Pseudomonas fluorescens. These enzymes showed high catalytic activities even at 0°C and were extremely labile at temperatures over 35°C. The enzymes were also found to be less resistant to organic solvents than alanine racemases from thermophilic and mesophilic bacteria, both in vivo and in vitro. Both enzymes have a dimeric structure and contain 2 mol of pyridoxal 5′-phosphate (PLP) per mol as a coenzyme. The enzyme from B. psychrosaccharolyticus was found to have a markedly large Km value (5.0 μM) for PLP in comparison with other reported alanine racemases, and was stable at temperatures up to 50°C in the presence of excess amounts of PLP. The dissociation of PLP from the P. fluorescens enzyme may trigger the unfolding of the secondary structure. The enzyme from B. psychrosaccharolyticus has a distinguishing hydrophilic region around residue no. 150 in its deduced amino acid sequence, whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of this region in the three dimensional structure of this enzyme was predicted to be in a surface loop surrounding the active site. This hydrophilic region may interact with solvent, reduce the compactness of the active site, and destabilize the enzyme.  相似文献   

2.
W S Faraci  C T Walsh 《Biochemistry》1989,28(2):431-437
The alanine racemases are a group of PLP-dependent bacterial enzymes that catalyze the racemization of alanine, providing D-alanine for cell wall synthesis. Inactivation of the alanine racemases from the Gram-negative organism Salmonella typhimurium and Gram-positive organism Bacillus stearothermophilus with beta, beta, beta-trifluoroalanine has been studied. The inactivation occurs with the same rate constant as that for formation of a broad 460-490-nm chromophore. Loss of two fluoride ions per mole of inactivated enzyme and retention of [1-14C]trifluoroalanine label accompany inhibition, suggesting a monofluoro enzyme adduct. Partial denaturation (1 M guanidine) leads to rapid return of the initial 420-nm chromophore, followed by a slower (t1/2 approximately 30 min-1 h) loss of the fluoride ion and 14CO2 release. At this point, reduction by NaB3H4 and tryptic digestion yield a single radiolabeled peptide. Purification and sequencing of the peptide reveals that lysine-38 is covalently attached to the PLP cofactor. A mechanism for enzyme inactivation by trifluoroalanine is proposed and contrasted with earlier results on monohaloalanines, in which nucleophilic attack of released aminoacrylate on the PLP aldimine leads to enzyme inactivation. For trifluoroalanine inactivation, nucleophilic attack of lysine-38 on the electrophilic beta-difluoro-alpha, beta-unsaturated imine provides an alternative mode of inhibition for these enzymes.  相似文献   

3.
Spies MA  Toney MD 《Biochemistry》2003,42(17):5099-5107
Alanine racemase catalyzes the pyridoxal phosphate-dependent interconversion of the D- and L-isomers of alanine. Previous studies have shown that the enzyme employs a two-base mechanism in which Lys39 and Tyr265 are the acid/base catalysts. It is thus possible that stereoisomerization of the external aldimine intermediates occurs through a concerted double proton transfer without the existence of a distinct carbanionic intermediate. This possibility was tested by the application of multiple kinetic isotope effect (KIE) methodology to alanine racemase. The mutual dependence of primary substrate and solvent deuterium KIEs has been measured using equilibrium perturbation-type experiments. The conceptually straightforward measurement of the substrate KIE in H(2)O is complemented with a less intuitive protium washout perturbation-type measurement in D(2)O. The primary substrate KIE in the D --> L direction at 25 degrees C is reduced from 1.297 in H(2)O to 1.176 in D(2)O, while in the L --> D direction it is reduced from 1.877 in H(2)O to 1.824 in D(2)O. Similar reductions are also observed at 65 degrees C, the temperature to which the Bacillus stearothermophilus enzyme is adapted. These data strongly support a stepwise racemization of stereoisomeric aldimine intermediates in which a substrate-based carbanion is an obligatory intermediate. The ionizations observed in k(cat)/K(M) pH profiles have been definitively assigned based on the DeltaH(ion) values of the observed pK(a)'s with alanine and on the pH dependence of k(cat)/K(M) for the alternative substrate serine. The acidic pK(a) in the bell-shaped curve is due to the phenolic hydroxyl of Tyr265, which must be unprotonated for reaction with either isomer of alanine. The basic pK(a) is due to the substrate amino group, which must be protonated to react with Tyr265-unprotonated enzyme. A detailed reaction mechanism incorporating these results is proposed.  相似文献   

4.
A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site.  相似文献   

5.
The anatomy of catalysis (i.e., reaction dynamics, thermodynamics and transition state structures) is compared herein for acetylcholinesterases from human erythrocytes and Electrophorus electricus. The two enzymes have similar relative activities for the substrate o-nitrochloroacetanilide and o-nitrophenyl acetate. In addition, with each substrate K values and solvent deuterium kinetic isotope effects for kES and kE are similar for the two enzymes. Solvent isotope effects in mixed isotopic buffers indicate that the acylation stages of o-nitrochloroacetanilide turnover by the two enzymes are rate-limited by virtual transition states that are weighted averages of contributions from transition states of serial chemical and physical steps. Similar experiments show that the transition states for Vmax of o-nitrophenyl acetate turnover by the two enzymes are stabilized by simple general acid-base (i.e., one-proton) catalysis. These comparisons demonstrate that acetylcholinesterases from diverse sources display functional analogy in that reaction dynamics and transition state structures are closely similar.  相似文献   

6.
Karsten WE  Ohshiro T  Izumi Y  Cook PF 《Biochemistry》2005,44(48):15930-15936
Serine-glyoxylate aminotransferase (SGAT) from Hyphomicrobium methylovorum is a pyridoxal 5'-phosphate (PLP) enzyme that catalyzes the interconversion of L-serine and glyoxylate to hydroxypyruvate and glycine. The primary deuterium isotope effect using L-serine 2-D is one on (V/K)serine and V in the steady state. Pre-steady-state experiments also indicate that there is no primary deuterium isotope effect with L-serine 2-D. The results suggest there is no rate limitation by abstraction of the alpha proton of L-serine in the SGAT reaction. In the steady-state a solvent deuterium isotope effect of about 2 was measured on (V/K)L-serine and (V/K)ketomalonate and about 5.5 on V. Similar solvent isotope effects were observed in the pre-steady-state for the natural substrates and the alternative substrate ketomalonate. In the pre-steady-state, no reaction intermediates typical of PLP enzymes were observed with the substrates L-serine, glyoxylate, and hydroxypyruvate. The data suggest that breakdown and formation of the ketimine intermediate is the primary rate-limiting step with the natural substrates. In contrast, using the alternative substrate ketomalonate, pre-steady-state experiments display the transient formation of a 490 nm absorbing species typical of a quinonoid intermediate. The solvent isotope effect results also suggest that with ketomalonate as substrate protonation at C(alpha) is the slowest step in the SGAT reaction. This is the first report of a rate-limiting protonation of a quinonoid at C(alpha) of the external Schiff base in an aminotransferase reaction.  相似文献   

7.
Earlier, it had been proposed in the laboratories at Halle that a cysteine residue is responsible for the hysteretic substrate activation behavior of yeast pyruvate decarboxylase. More recently, this idea has received support in a series of studies from Rutgers with the identification of residue C221 as the site where substrate is bound to transmit the information to H92, to E91, to W412, and finally to the active center thiamin diphosphate. According to steady-state kinetic assays, the C221A/C222A variant is no longer subject to substrate activation yet is still a well-functioning enzyme. Several further experiments are reported on this variant: (1) The variant exhibits lag phases in the product formation progress curves, which can be attributed to a unimolecular step in the pre-steady-state stage of catalysis. (2) The rate of exchange with solvent deuterium of the thiamin diphosphate C2H atom is slowed by a factor of 2 compared to the wild-type enzyme, suggesting that the reduced activity that results from the substitutions some 20 A from the active center is also seen in the first key step of the reaction. (3) The solvent (deuterium oxide) kinetic isotope effect was found to be inverse on V(max)/K(m) (0.62), and small but normal on V(max) (1.26), virtually ruling out residue C221 as being responsible for the inverse effects reported for the wild-type enzyme at low substrate concentrations. The solvent kinetic isotope effects are compared to those on two related enzymes not subject to substrate activation, Zymomonas mobilis pyruvate decarboxylase and benzoylformate decarboxylase.  相似文献   

8.
From the reaction mechanism and crystal structure analysis, a bacterial alanine racemase is believed to work as a homodimer with a substrate, l-alanine or d-alanine. We analysed oligomerization states of seven alanine racemases, biosynthetic and catabolic, from Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, P. putida and P. fluorescens, with three different methods, gel filtration chromatography, native PAGE and analytical ultracentrifugation. All alanine racemases were proved to be in a dynamic equilibrium between monomeric and dimeric form with every methods used in this study. In both biosynthetic and catabolic alanine racemases, association constants for dimerization were high for the enzymes with high V(max) values. The enzymes with low V(max) values gave the low association constants. We proposed that alanine racemases are classified into two types; the enzymes with low and high-equilibrium association constants for dimerization.  相似文献   

9.
J D Hermes  P M Weiss  W W Cleland 《Biochemistry》1985,24(12):2959-2967
Phenylalanine ammonia-lyase has been shown to catalyze the elimination of ammonia from the slow alternate substrate 3-(1,4-cyclohexadienyl)alanine by an E1 cb mechanism with a carbanion intermediate. This conclusion resulted from comparison of 15N isotope effects with deuterated (0.9921) and unlabeled substrates (1.0047), and a deuterium isotope effect of 2.0 from dideuteration at C-3, with the equations for concerted, carbanion, and carbonium ion mechanisms. The 15N equilibrium isotope effect on the addition of the substrate to the dehydroalanine prosthetic group on the enzyme is 0.979, while the kinetic 15N isotope effect on the reverse of this step is 1.03-1.04 and the intrinsic deuterium isotope effect on proton removal is in the range 4-6. Isotope effects with phenylalanine itself are small (15N ones of 1.0021 and 1.0010 when unlabeled or 3-dideuterated and a deuterium isotope effect of 1.15) but are consistent with the same mechanism with drastically increased commitments, including a sizable external one (i.e., phenylalanine is sticky). pH profiles show that the amino group of the substrate must be unprotonated to react but that a group on the enzyme with a pK of 9 must be protonated, possibly to catalyze addition of the substrate to dehydroalanine. Incorrectly protonated enzyme-substrate complexes do not form. Equilibrium 15N isotope effects are 1.016 for the deprotonation of phenylalanine or its cyclohexadienyl analogue, 1.0192 for deprotonation of NH4+, 1.0163 for the conversion of the monoanion of phenylalanine to NH3, and 1.0138 for the conversion of the monoanion of aspartate to NH4+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We report the crystal structure of alanine racemase from Mycobacterium tuberculosis (Alr(Mtb)) at 1.9 A resolution. In our structure, Alr(Mtb) is found to be a dimer formed by two crystallographically different monomers, each comprising 384 residues. The domain makeup of each monomer is similar to that of Bacillus and Pseudomonas alanine racemases and includes both an alpha/beta-barrel at the N-terminus and a C-terminus primarily made of beta-strands. The hinge angle between these two domains is unique for Alr(Mtb), but the active site geometry is conserved. In Alr(Mtb), the PLP cofactor is covalently bound to the protein via an internal aldimine bond with Lys42. No guest substrate is noted in its active site, although some residual electron density is observed in the enzyme's active site pocket. Analysis of the active site pocket, in the context of other known alanine racemases, allows us to propose the inclusion of conserved residues found at the entrance to the binding pocket as additional targets in ongoing structure-aided drug design efforts. Also, as observed in other alanine racemase structures, PLP adopts a conformation that significantly distorts the planarity of the extended conjugated system between the PLP ring and the internal aldimine bond.  相似文献   

11.
S C Kim  F M Raushel 《Biochemistry》1986,25(17):4744-4749
The mechanism of the argininosuccinate lyase reaction has been probed by the measurement of the effects of isotopic substitution at the reaction centers. A primary deuterium isotope effect of 1.0 on both V and V/K is obtained with (2S,3R)-argininosuccinate-3-d, while a primary 15N isotope effect on V/K of 0.9964 +/- 0.0003 is observed. The 15N isotope effect on the equilibrium constant is 1.018 +/- 0.001. The proton that is abstracted from C-3 of argininosuccinate is unable to exchange with the solvent from the enzyme-intermediate complex but is rapidly exchanged with solvent from the enzyme-fumarate-arginine complex. A deuterium solvent isotope effect of 2.0 is observed on the Vmax of the forward reaction. These and other data have been interpreted to suggest that argininosuccinate lyase catalyzes the cleavage of argininosuccinate via a carbanion intermediate. The proton abstraction step is not rate limiting, but the inverse 15N primary isotope effect and the solvent deuterium isotope effect suggest that protonation of the guanidino group and carbon-nitrogen bond cleavage of argininosuccinate are kinetically significant.  相似文献   

12.
Bacterial alanine racemases are classified into two types of subunit structure (monomer and homodimer). To clarify the catalytic unit of monomeric alanine racemases, we examined the apparent molecular mass of the monomeric alanine racemases from Shigella dysenteriae, Shigella boydii, Shigella flexneri, and Shigella sonnei by gel filtration in the presence of the substrate and inhibitor. The enzymes were eluted on gel filtration as a monomer of about 39,000 Da at low protein concentration and in the absence of L-alanine and D-cycloserine. An increase in the apparent molecular mass was induced by increasing the protein concentration or by adding the ligands in the elution buffer. The increase ratio depended on the ligand concentration, and the maximum apparent molecular masses of all enzymes were 60,000 and 76,000 Da in the presence of 100 mM L-alanine and 5 mM D-cycloserine, respectively. D-cycloserine may induce an inactive dimer and L-alanine may induce an intermediate between the monomer and dimer because of dynamic equilibrium. The apoenzyme also showed similar behavior in the presence of the ligands, but the increase ratios were lower than those of the holoenzymes. The Bacillus psychrosaccharolyticus alanine racemase, having a dimeric structure, showed a constant molecular mass irrespective of the absence or presence of the ligands. These results suggest that the monomeric Shigella Alr enzymes have a dimeric structure in the catalytic reaction. Substances that inhibit the subunit interaction of monomeric alanine racemases may be useful as a new type of antibacterial.  相似文献   

13.
Molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential have been carried out to investigate the internal proton transfer equilibrium of the external aldimine species in l-dopa decarboxylase, and carbanion stabilization by the enzyme cofactor in the active site of alanine racemase. Solvent effects lower the free energy of the O-protonated PLP tautomer both in aqueous solution and in the active site, resulting a free energy difference of about -1 kcal/mol relative to the N-protonated Schiff base in the enzyme. The external aldimine provides the dominant contribution to lowering the free energy barrier for the spontaneous decarboxylation of l-dopa in water, by a remarkable 16 kcal/mol, while the enzyme l-dopa decarboxylase further lowers the barrier by 8 kcal/mol. Kinetic isotope effects were also determined using a path integral free energy perturbation theory on the primary (13)C and the secondary (2)H substitutions. In the case of alanine racemase, if the pyridine ring is unprotonated as that in the active site, there is destabilizing contribution to the formation of the α-carbanion in the gas phase, although when the pyridine ring is protonated the contribution is stabilizing. In aqueous solution and in alanine racemase, the α-carbanion is stabilized both when the pyridine ring is protonated and unprotonated. The computational studies illustrated in this article show that combined QM/MM simulations can help provide a deeper understanding of the mechanisms of PLP-dependent enzymes. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.  相似文献   

14.
S J O'Keefe  J R Knowles 《Biochemistry》1986,25(20):6077-6084
To investigate the mechanism of the carboxylation of pyruvate to oxalacetate catalyzed by the enzyme transcarboxylase, we have measured the D(V/K) and 13(V/K) isotope effects. Comparison of the double-reciprocal plots of the initial velocities with [1H3]pyruvate and with [2H3]pyruvate as substrate yields a deuterium isotope effect on Vmax/Km of 1.39 +/- 0.04. The 13C kinetic isotope effect on the carboxylation of pyruvate to oxalacetate has been measured by the competitive method and is 1.0227 +/- 0.0008. To determine whether the removal of the proton from pyruvate and the addition of the carboxyl group occur in the same or in different steps, the double-isotope fractionation test has been used. When [2H3]pyruvate replaces [1H3]pyruvate as the substrate, the observed 13(V/K) isotope effect falls from 1.0227 to 1.0141 +/- 0.001. The latter value is in excellent agreement with the value of 1.0136, predicted for a stepwise pathway. We may conclude, therefore, that the carboxylation of pyruvate catalyzed by transcarboxylase proceeds by a stepwise mechanism involving the intermediate formation of the substrate carbanion.  相似文献   

15.

Pyridoxal-5′-phosphate (PLP)-dependent enzymes are ubiquitous in nature and catalyze a variety of important metabolic reactions. The fold-type III PLP-dependent enzyme family is primarily comprised of decarboxylases and alanine racemases. In the development of a multiple structural alignment database (3DM) for the enzyme family, a large subset of 5666 uncharacterized proteins with high structural, but low sequence similarity to alanine racemase and decarboxylases was found. Compared to these two classes of enzymes, the protein sequences being the object of this study completely lack the C-terminal domain, which has been reported important for the formation of the dimer interface in other fold-type III enzymes. The 5666 sequences cluster around four protein templates, which also share little sequence identity to each other. In this work, these four template proteins were solubly expressed in Escherichia coli, purified, and their substrate profiles were evaluated by HPLC analysis for racemase activity using a broader range of amino acids. They were found active only against alanine or serine, where they exhibited Michaelis constants within the range of typical bacterial alanine racemases, but with significantly lower turnover numbers. As the already described racemases were proposed to be active and appeared to be monomers as judged from their crystal structures, we also investigated this aspect for the four new enzymes. Here, size exclusion chromatography indicated the presence of oligomeric states of the enzymes and a native-PAGE in-gel assay showed that the racemase activity was present only in an oligomeric state but not as monomer. This suggests the likelihood of a different behavior of these enzymes in solution compared to the one observed in crystalline form.

  相似文献   

16.
Characterization of the alanine racemases from two mycobacteria   总被引:2,自引:0,他引:2  
D-Alanine is a necessary precursor in the biosynthesis of the bacterial peptidoglycan. The naturally occurring L-alanine isomer is racemized to its D-form through the action of a class of enzymes called alanine racemases. These enzymes are ubiquitous among prokaryotes, and with very few exceptions are absent in eukaryotes, making them a logical target for the development of novel antibiotics. The alanine racemase gene from both Mycobacterium tuberculosis and M. avium was amplified by PCR and cloned in Escherichia coli. Overexpression of the proteins in the E. coli BL21 system, both as native and as His-tagged recombinant products, has been achieved. The proteins have been purified to electrophoretic homogeneity and analyzed biochemically. A D-alanine requiring double knock-out mutant of E. coli (alr, dadX) was constructed and the cloned genes were able to complement its deficiencies.  相似文献   

17.
Sun S  Toney MD 《Biochemistry》1999,38(13):4058-4065
A positively charged residue, R219, was found to interact with the pyridine nitrogen of pyridoxal phosphate in the structure of alanine racemase from Bacillus stearothermophilus [Shaw et al. (1997) Biochemistry 36, 1329-1342]. Three site-directed mutants, R219K, R219A, and R219E, have been characterized and compared to the wild type enzyme (WT) to investigate the role of R219 in catalysis. The R219K mutation is functionally conservative, retaining approximately 25% of the WT activity. The R219A and R219E mutations decrease enzyme activity by approximately 100- and 1000-fold, respectively. These results demonstrate that a positively charged residue at this position is required for efficient catalysis. R219 and Y265 are connected through H166 via hydrogen bonds. The R219 mutants exhibit similar kinetic isotope effect trends: increased primary isotope effects (1.5-2-fold) but unchanged solvent isotope effects in the L --> D direction and increased solvent isotope effects (1.5-2-fold) but unchanged primary isotope effects in the D --> L direction. These results support a two-base racemization mechanism involving Y265 and K39. They additionally suggest that Y265 is selectively perturbed by R219 mutations through the H166 hydrogen-bond network. pH profiles show a large pKa shift from 7.1-7.4 (WT and R219K) to 9. 5-10.4 (R219A and R219E) for kcat/KM, and from 7.3 to 9.9-10.4 for kcat. The group responsible for this ionization is likely to be the phenolic hydroxyl of Y265, whose pKa is electrostatically perturbed in the WT by the H166-mediated interaction with R219. Accumulation of an absorbance band at 510 nm, indicative of a quinonoid intermediate, only in the D --> L direction with R219E provides additional evidence for a two-base mechanism involving Y265.  相似文献   

18.

Background

Over the past fifteen years, antibiotic resistance in the Gram-positive opportunistic human pathogen Streptococcus pneumoniae has significantly increased. Clinical isolates from patients with community-acquired pneumonia or otitis media often display resistance to two or more antibiotics. Given the need for new therapeutics, we intend to investigate enzymes of cell wall biosynthesis as novel drug targets. Alanine racemase, a ubiquitous enzyme among bacteria and absent in humans, provides the essential cell wall precursor, D-alanine, which forms part of the tetrapeptide crosslinking the peptidoglycan layer.

Results

The alanine racemases gene from S. pneumoniae (alr SP ) was amplified by PCR and cloned and expressed in Escherichia coli. The 367 amino acid, 39854 Da dimeric enzyme was purified to electrophoretic homogeneity and preliminary crystals were obtained. Racemic activity was demonstrated through complementation of an alr auxotroph of E. coli growing on L-alanine. In an alanine racemases photometric assay, specific activities of 87.0 and 84.8 U mg-1 were determined for the conversion of D- to L-alanine and L- to D-alanine, respectively.

Conclusion

We have isolated and characterized the alanine racemase gene from the opportunistic human pathogen S. pneumoniae. The enzyme shows sufficient homology with other alanine racemases to allow its integration into our ongoing structure-based drug design project.  相似文献   

19.
Amino acid racemases inherently catalyze the exchange of alpha-hydrogen of amino acids with deuterium during racemization in 2H2O. When the reactions catalyzed by alanine racemase (EC 5.1.1.1) and L-alanine dehydrogenase (EC 1.4.1.1), which is pro-R specific for the C-4 hydrogen transfer of NADH, are coupled in 2H2O, [4R-2H]NADH is exclusively produced. Similarly, [4S-2H]NADH is made in 2H2O with amino-acid racemase with low substrate specificity (EC 5.1.1.10) and L-leucine dehydrogenase (EC 1.4.1.9), which is pro-S specific. We have established a simple procedure for the in situ analysis of stereospecificity of C-4 hydrogen transfer of NADH by an NAD-dependent dehydrogenase by combination with either of the above two couples of enzymes in the same reaction mixture. When the C-4 hydrogen of NAD+ is fully retained after sufficient incubation, the stereospecificity of hydrogen transfer by a dehydrogenase is the same as that of alanine dehydrogenase or leucine dehydrogenase. However, when the C-4 hydrogen of NAD+ is exchanged with deuterium, the enzyme to be examined shows the different stereospecificity from alanine dehydrogenase or leucine dehydrogenase. Thus, we can readily determine the stereospecificity by 1H NMR measurement without isolation of the coenzymes and products.  相似文献   

20.
V Hines  M Johnston 《Biochemistry》1989,28(3):1227-1234
Dihydroorotates deuteriated at both C5 and C6 have been prepared and used to probe the mechanism of the bovine liver mitochondrial dihydroorotate dehydrogenase. Primary deuterium isotope effects on kcat are observed with both (6RS)-[5(S)-2H]- and (6RS)-[6-2H] dihydroorotates (3 and 6, respectively); these effects are maximal at low pH. At pH 6.6, DV = 3.4 for the C5-deuteriated dihydroorotate (3), and DV = 2.3 for the C6-deuteriated compound (6). The isotope effects approach unity at pH 8.8. Analysis of the pH dependence of the isotope effects on kcat reveals a shift in the rate-determining step of the enzyme mechanism as a function of pH. Dihydroorotate oxidation appears to require general base catalysis (pKB = 8.26); this step is completely rate-determining at low pH and isotopically sensitive. Reduction of the cosubstrate, coenzyme Q6, is rate-limiting at high pH and is isotopically insensitive; this step appears to require general acid catalysis (pKA = 8.42). The results of double isotope substitution studies and analysis for substrate isotope exchange with solvent point toward a concerted mechanism for oxidation of dihydroorotate. This finding serves to distinguish further the mammalian dehydrogenase from its parasitic cognate, which catalyzes a stepwise oxidation reaction [Pascal, R., & Walsh, C.T. (1984) Biochemistry 23, 2745].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号