首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The nucleotide sequence of the Rhodobacter capsulatus bacterioferritin gene ( bfr ) was determined and found to encode a protein of 161 amino acids with a predicted molecular mass of 18 174 Da. The molecular mass of the purified protein was estimated to be 18 176.06 ± 0.80 Da by electrospray mass spectrometry. The bfr gene was introduced into an expression vector, and bacterioferritin was produced to a high level in Escherichia coli . The amino acids which are involved in haem ligation, and those which provide ligands in the binuclear metal centre in bacterioferritin from E. coli are conserved in the R. capsulatus protein. The sequences of bacterioferritins, ferritin-like proteins, and proteins similar to Dps of E. coli are compared, and membership of the bacterioferritin family re-evaluated.  相似文献   

2.
3.
A lambda placMu1 insertion was made into araE, the gene for arabinose-proton symport in Escherichia coli. A phage containing an araE'-'lacZ fusion was recovered from the lysogen and its restriction map compared with that of the 61-min region of the E. coli genome to establish the gene order thyA araE orf lysR lysA galR; araE was transcribed toward orf. A 4.8-kilobase SalI-EcoRI DNA fragment containing araE was subcloned from the phage lambda d(lysA+ galR+ araE+) into the plasmid vector pBR322. From this plasmid a 2.8-kilobase HincII-PvuII DNA fragment including araE was sequenced and also subcloned into the expression vector pAD284. The araE gene was 1416-base pairs long, encoding a hydrophobic protein of 472 amino acids with a calculated Mr of 51,683. The amino acid sequence was homologous with the xylose-proton symporter of E. coli and the glucose transporters from a human hepatoma HepG2 cell line, human erythrocytes, and rat brain. The overexpressed araE gene product was identified in Coomassie-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of cell membranes as a protein of apparent Mr 35,000 +/- 1,150. Arabinose protected this protein against reaction with N-ethylmaleimide.  相似文献   

4.
The aconitase of Escherichia coli was purified to homogeneity, albeit in low yield (0.6%). It was shown to be a monomeric protein of Mr 95,000 or 97,500 by gel filtration and SDS-PAGE analysis, respectively. The N-terminal amino acid sequence resembled that of the Bacillus subtilis enzyme (citB product), but the similarity at the DNA level was insufficient to allow detection of the E. coli acn gene using a 456 bp citB probe. Phages containing the acn gene were isolated from a lambda-E. coli gene bank by immunoscreening with an antiserum raised against purified bacterial enzyme. The acn gene was located at 28 min (1350 kb) in the physical map of the E. coli chromosome by probing Southern blots with a fragment of the gene. Attempts to locate the gene using the same procedure with oligonucleotide probes encoding segments of the N-terminal amino acid sequence were complicated by the lack of probe specificity and an inaccuracy in the physical map of Kohara et al. (Cell 50, 495-508, 1987). Aconitase specific activity was amplified some 20-200-fold in cultures transformed with pGS447, a derivative of pUC119 containing the acn gene, and an apparent four-fold activation-deactivation of the phagemid-encoded enzyme was observed in late exponential phase. The aconitase antiserum cross-reacted with both the porcine and Salmonella typhimurium (Mr 120,000) enzymes.  相似文献   

5.
The Escherichia coli gene purR, encoding a repressor protein, was cloned by complementation of a purR mutation. Gene purR on a multicopy plasmid repressed expression of purF and purF-lacZ and reduced the growth rate of host cells by limiting the rate of de novo purine nucleotide synthesis. The level of a 1.3-kilobase purR mRNA was higher in cells grown with excess adenine, suggesting that synthesis of the repressor may be regulated. The chromosomal locus of purR was mapped to coordinate 1755-kb on the E. coli restriction map (Kohara, Y., Akiyama, K., and Isono, K. (1987) Cell 50, 495-508). Pur repressor bound specifically to purF operator DNA as determined by gel retardation and DNase I footprinting assays. The amino acid sequence of Pur repressor was derived from the nucleotide sequence. Pur repressor subunit contains 341 amino acids and has a calculated Mr of 38,179. Pur repressor is 31-35% identical with the galR and cytR repressors and 26% identical with the lacI repressor. These four repressors are likely homologous. Amino acid sequence similarity is greatest in an amino-terminal region presumed to contain a DNA-binding domain. A similarity is also noted in the operator sites for these repressors.  相似文献   

6.
Thymidylate kinase (dTMP kinase; EC 2.7.4.9) catalyzes the phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis. The nucleotide sequence of the tmk gene encoding this essential Escherichia coli enzyme is the last one among all the E. coli nucleoside and nucleotide kinase genes which has not yet been reported. By subcloning the 24.0-min region where the tmk gene has been previously mapped from the lambda phage 236 (E9G1) of the Kohara E. coli genomic library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987), we precisely located tmk between acpP and holB genes. Here we report the nucleotide sequence of tmk, including the end portion of an upstream open reading frame (ORF 340) of unknown function that may be cotranscribed with the pabC gene. The tmk gene was located clockwise of and just upstream of the holB gene. Our sequencing data allowed the filling in of the unsequenced gap between the acpP and holB genes within the 24-min region of the E. coli chromosome. Identification of this region as the E. coli tmk gene was confirmed by functional complementation of a yeast dTMP kinase temperature-sensitive mutant and by in vitro enzyme assay of the thymidylate kinase activity in cell extracts of E. coli by use of tmk-overproducing plasmids. The deduced amino acid sequence of the E. coli tmk gene showed significant similarity to the sequences of the thymidylate kinases of vertebrates, yeasts, and viruses as well as two uncharacterized proteins of bacteria belonging to Bacillus and Haemophilus species.  相似文献   

7.
Penicillin-binding protein (PBP) 7 of Escherichia coli is a poorly characterized member of the family of enzymes that synthesize and modify the bacterial cell wall. The approximate chromosomal position of the gene encoding this protein was determined by measuring the expression of PBPs during lytic infection of E. coli by each of the 476 miniset members of the Kohara lambda phage genomic library. Phages lambda 363 and lambda 364, encompassing the region from 47.7 to 48 min of the chromosome, overproduced PBP 7. One open reading frame, yohB, was present on both these phages and directed the expression of PBPs 7 and 8. The predicted amino acid sequence of PBP 7 contains the consensus motifs associated with other PBPs and has a potential site near the carboxyl terminus where proteolysis by the OmpT protein could occur, creating an appropriately sized PBP 8. The PBP 7 gene (renamed pbpG) was interrupted by insertion of a kanamycin resistance gene cassette and was moved to the chromosome of E. coli. No obvious growth defects were observed, suggesting that PBP 7 is not essential for growth under normal laboratory conditions.  相似文献   

8.
NotI genomic cleavage map of Escherichia coli K-12 strain MG1655.   总被引:4,自引:2,他引:2       下载免费PDF全文
Several approaches were used to construct a complete NotI restriction enzyme cleavage map of the genome of Escherichia coli MG1655. The approaches included use of transposable element insertions that created auxotrophic mutations and introduced a NotI site into the genome, hybridization of NotI fragments to the ordered lambda library constructed by Kohara et al. (BioTechniques 10:474-477, 1991), Southern blotting of NotI digests with cloned genes as probes, and analysis of the known E. coli DNA sequence for NotI sites. In all, 22 NotI cleavage sites were mapped along with 26 transposon insertions. These sites were localized to clones in the lambda library and, when possible, sequenced genes. The map was compared with that of strain EMG2, a wild-type E. coli K-12 strain, and several differences were found, including a region of about 600 kb with an altered restriction pattern and an additional fragment in MG1655. Comparison of MG1655 with other strains revealed minor differences but indicated that this map was representative of that for many commonly used E. coli K-12 strains.  相似文献   

9.
A soluble protein EF-P (elongation factor P) from Escherichia coli has been purified and shown to stimulate efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Based on the partial amino acid sequence of EF-P, 18- and 24-nucleotide DNA probes were synthesized and used to screen lambda phage clones from the Kohara Gene Bank. The entire EF-P gene was detected on lambda clone #650 which contains sequences from the 94 minute region of the E.coli genome. Two DNA fragments, 3.0 and 0.78 kilobases in length encompassing the gene, were isolated and cloned into pUC18 and pUC19. Partially purified extracts from cells transformed with these plasmids overrepresented a protein which co-migrates with EF-P upon SDS polyacrylamide gel electrophoresis, and also exhibited increased EF-P mediated peptide-bond synthetic activity. Based on DNA sequence analysis of this gene, the EF-P protein consists of 187 amino acids with a calculated molecular weight of 20,447. The sequence and chromosomal location of EF-P establishes it as a unique gene product.  相似文献   

10.
The enzyme NAD(P)H:flavin oxidoreductase (flavin reductase) catalyzes the reduction of soluble flavins by reduced pyridine nucleotides. In Escherichia coli it is part of a multienzyme system that reduces the Fe(III) center of ribonucleotide reductase to Fe(II) and thereby sets the stage for the generation by dioxygen of a free tyrosyl radical required for enzyme activity. Similar enzymes are known in other organisms and may more generally be involved in iron metabolism. We have now isolated the gene for the E. coli flavin reductase from a lambda gt11 library. After DNA sequencing we found an open reading frame coding for a polypeptide of 233 amino acids, with a molecular weight of 26,212 and with an N-terminal segment identical to that determined by direct Edman degradation. The coding sequence is preceded by a weak ribosome binding site centered 8 nucleotides from the start codon and by a promoterlike sequence centered at a distance of 83 nucleotides. In a Kohara library the gene hybridized to position 3680 on the physical map of E. coli. A bacterial strain that overproduced the enzyme approximately 100-fold was constructed. The translated amino acid sequence contained a potential pyridine nucleotide-binding site and showed 25% identity with the C-terminal part of one subunit (protein C) of methane monooxygenase from methanotropic bacteria that reduces the iron center of a second subunit (protein A) of the oxygenase by pyridine nucleotides.  相似文献   

11.
We report here on the existence of a new gene for lysine decarboxylase in Escherichia coli K-12. The hybridization experiments with a cadA probe at low stringency showed that the homologous region of cadA was located in lambda Kohara phage clone 6F5 at 4.7 min on the E. coli chromosome. We cloned the 5.0-kb HindIII fragment of this phage clone and sequenced the homologous region of cadA. This region contained a 2,139-nucleotide open reading frame encoding a 713-amino-acid protein with a calculated molecular weight of 80,589. Overexpression of the protein and determination of its N-terminal amino acid sequence defined the translational start site of this gene. The deduced amino acid sequence showed 69.4% identity to that of lysine decarboxylase encoded by cadA at 93.7 min on the E. coli chromosome. In addition, the level of lysine decarboxylase activity increased in strains carrying multiple copies of the gene. Therefore, the gene encoding this lysine decarboxylase was designated Idc. Analysis of the lysine decarboxylase activity of strains containing cadA, ldc, or cadA ldc mutations indicated that ldc was weakly expressed under various conditions but is a functional gene in E. coli.  相似文献   

12.
Degenerate oligonucleotides based on the published Escherichia coli glutamate decarboxylase (GAD) protein sequence were used in a polymerase chain reaction to generate a DNA probe for the E. coli GAD structural gene. Southern blots showed that there were two cross-hybridizing GAD genes, and both of these were cloned and sequenced. The two GAD structural genes, designated gadA and gadB, were found to be 98% similar at the nucleotide level. Each gene encoded a 466-residue polypeptide, named, respectively, GAD alpha and GAD beta, and these differed by only five amino acids. Both GAD alpha and GAD beta contain amino acid residues which are highly conserved among pyridoxal-dependent decarboxylases, but otherwise the protein sequences were not homologous to any other known proteins. By restriction mapping and hybridization to the Kohara miniset library, the two GAD genes were located on the E. coli chromosome. gadA maps at 4046 kb and gadB at 1588 kb. Neither of these positions is in agreement with the current map position for gadS as determined by genetic means. Analysis of Southern blots indicated that two GAD genes were present in all E. coli strains examined, including representatives from the ECOR collection. However, no significant cross-hybridizing gene was found in Salmonella species. Information about the DNA sequences and map positions of gadA and gadB should facilitate a genetic approach to elucidate the role of GAD in E. coli metabolism.  相似文献   

13.
Two extragenic suppressors which allow temperature-sensitive htrA mutant Escherichia coli bacteria to grow at 42 degrees C and simultaneously acquire a cold-sensitive phenotype at 30 degrees C were isolated. The cold-sensitive phenotype exhibited by one of the mutants was used to clone the corresponding wild-type copy of the suppressor gene. This was done through complementation with a mini-mu plasmid E. coli DNA library, by selection for colonies which were no longer cold sensitive, at 30 degrees C. The cloned suppressor gene was shown to complement the cold-sensitive phenotype of both suppressor mutations. It was mapped to 68 min on the E. coli chromosome through hybridization to the Kohara library of overlapping lambda transducing bacteriophages, which covers the entire E. coli chromosome. The complementing gene was further subcloned on an 830-base-pair (bp) DNA fragment. DNA sequencing revealed the presence of an open reading frame (ORF) of 333 bp which could encode a protein of 12,359 Mr. Subcloning of various DNA fragments from within this 830-bp DNA fragment suggests that this ORF is most likely responsible for suppression of the cold-sensitive phenotype of the htrA suppressor bacteria. By using a T7 polymerase system to overproduce plasmid-encoded proteins, a protein of approximately 12,000 Mr was produced by this cloned DNA fragment. This ORF defines a previously undiscovered gene in E. coli, called sohA (suppressor of htrA).  相似文献   

14.
Subgenomic mRNA from a virulent isolate of porcine transmissible gastroenteritis virus (TGEV) was used to produce cDNA clones. Part of a new clone and a previously reported clone were sequenced and used to construct the viral gene for integral membrane protein. A single open reading frame (ORF) encoding a polypeptide of 262 amino acids, relative molecular mass (Mr) 29,459, was identified. The positive identification of the polypeptide as the integral membrane protein was demonstrated by the production in E. coli of a chimaeric protein comprising most of the ORF encoding the Mr 29,459 polypeptide and beta-galactosidase. The chimaeric protein reacted with a specific monoclonal antibody to viral integral membrane protein and antibodies raised against the chimaeric protein immune precipitated the viral protein. Comparison with the sequence of an avirulent isolate indicates amino acid residues that may be important in pathogenicity.  相似文献   

15.
The 70-amino-acid-residue N-terminal sequence of the bacterioferritin (BFR) of Azotobacter vinelandii was determined and shown to be highly similar to the N-terminal sequences of the Escherichia coli and Nitrobacter winogradskyi bacterioferritins. Electrophoretic and immunological analyses further indicate that the bacterioferritins of E. coli, A. vinelandii and Pseudomonas aeruginosa are closely related. A novel, two-subunit assembly state that predominates over the 24-subunit form of BFR at low pH was demonstrated. The results indicate that the bacterioferritins form a family of proteins that are distinct from the ferritins of plants and animals.  相似文献   

16.
An nlp (Ner-like protein) gene was isolated from Escherichia coli. The nucleotide sequence of a 1,342-base-pair chromosomal DNA fragment containing the nlp gene was analyzed. It contained two open reading frames; one encoded 91 amino acid residues with an Mr of 10,361, and the other (ORFX) encoded 131 amino acid residues of the carboxyl-terminal region of a truncated polypeptide. The amino acid sequence deduced from the DNA sequence of nlp was highly homologous (62 to 63%) to the Ner proteins of bacteriophages Mu and D108. The amino-terminal region of Nlp deduced from the complete open reading frame contained a presumed DNA-binding region. The nlp gene was located at 69.3 min on the E. coli genetic map.  相似文献   

17.
T Daws  C J Lim    J A Fuchs 《Journal of bacteriology》1989,171(9):5218-5221
The Escherichia coli structural gene for glutathione synthetase, gshB, was cloned into pBR322. Plasmids containing gshB were able to complement the glutathione requirement of a trxA gshB double mutant, and cells containing the plasmids were found to have elevated levels of glutathione synthetase. A mutant gshB allele was constructed by inserting the kan gene from pUC4K into a unique HpaI site located within gshB. The resulting plasmid-encoded allele was used to replace a genomic gshB+ by homologous recombination. The resulting strain had no detectable glutathione synthetase activity. The gshB allele containing the kan insertion was used to map gshB on the E. coli chromosome by P1 transduction. The results indicated that gshB is located at 63.4 min, between metK and speC. The allele was further localized to a region of 3,100 to 3,120 kilobase pairs on the physical map (restriction map) of E. coli by DNA-DNA hybridization to a series of lambda bacteriophages (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987).  相似文献   

18.
The coding characteristics of four plasmids expressing a protein (BCP) which comigrates with bacterioferritin were examined and the nucleotide sequence of a common 1985 bp segment from the 53 min region of the Escherichia coli linkage map was determined. Three open reading-frames (orf1, orf2 and orf3) were detected, and orf2 (bcp, 156 amino acid codons) appeared to encode the bacterioferritin comigratory protein, BCP. The translation product of orf3 (205 amino acid codons) resembled the iron-sulphur protein component (DMS B subunit) of the anaerobic dimethylsulphoxide reductase complex of E. coli.  相似文献   

19.
The molecular cloning and the determination of the nucleotide sequence of the ispA gene responsible for farnesyl diphosphate (FPP) synthase [EC 2.5.1.1] activity in Escherichia coli are described. E. coli ispA strains have temperature-sensitive FPP synthase, and the defective gene is located at about min 10 on the chromosome. The wild-type ispA gene was subcloned from a lambda phage clone containing the chromosomal fragment around min 10, picked up from the aligned genomic library of Kohara et al. [Kohara, Y., Akiyama, K., & Isono, K. (1987) Cell 50, 495-508]. The cloned gene was identified as the ispA gene by the recovery and amplification of FPP synthase activity in an ispA strain. A 1,452-nucleotide sequence of the cloned fragment was determined. This sequence specifies two open reading frames, ORF-1 and ORF-2, encoding proteins with the expected molecular weights of 8,951 and 32,158, respectively. A part of the deduced amino acid sequence of ORF-2 showed similarity to the sequences of eucaryotic FPP synthases and of crtE product of a photosynthetic bacterium. The plasmid carrying ORF-2 downstream of the lac promoter complemented the defect of FPP synthase activity of the ispA mutant, showing that the product encoded by ORF-2 is the ispA product. The maxicell analysis indicated that a protein of molecular weight 36,000, approximately consistent with the molecular weight of the deduced ORF-2-encoded protein, is the gene product.  相似文献   

20.
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号