首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The steady-state regime of linear photosynthetic electron transport implies concerted operation of photosystems I and II (PSI and PSII) in plant leaves. Acidification of the thylakoid lumen is known to cause down-regulation of PSII photochemical activity but it is not yet clear how the proton accumulation in the lumen affects the PSI activity and coordinated operation of the two photosystems in intact leaves. Chlorophyll fluorescence and absorbance of oxidized chlorophyll P700 in the near-infrared region ΔA 810–870A 810) are convenient noninvasive indicators of the redox state of PSII and PSI components, respectively. Simultaneous measurements of chlorophyll fluorescence and ΔA 810 in pea leaves revealed that some kinetic stages in the induction curves occur synchronously both in dark-adapted and preilluminated leaves. After the treatment of leaves with ionophores promoting or inhibiting the light-induced thylakoid pH gradient (valinomycin, nigericin, monensin), the induction curves of ΔA 810 and chlorophyll fluorescence were consistently modified. The results suggest that characteristic stages of ΔA 810 induction curve, representing the second and the third waves of P700 photooxidation, are closely related to ΔpH generation, although the bases of ΔpH dependence differ for these two stages. The second wave of ΔA 810 depends presumably on stroma alkalinization as a precondition for photoactivation of electron flow from PSI to terminal acceptors. The third wave of ΔA 810 is apparently due to retardation of electron flow between PSII and PSI upon acidification of the lumen.  相似文献   

2.
Absorbance changes ΔA 810 were measured in pea (Pisum sativum L., cv. Premium) leaves to track redox transients of chlorophyll P700 during and after irradiation with far red (FR) light under various preillumination conditions in the absence and presence of inhibitors and protonophorous uncoupler of photosynthetic electron transport. It was shown that cyclic electron transport (CET) in chloroplasts of pea leaves operates at its highest rate after preillumination of leaves with white light and is strongly suppressed after preillumination with FR light. The FR light-induced suppression was partly released during prolonged dark adaptation. Upon FR illumination of dark-adapted leaves, the induction of CET was observed, during which CET activity increased to the peak from the low level and then decreased gradually. The kinetics of P700 oxidation induced by FR light of various intensities in leaves preilluminated with white light were fit to empirical sigmoid curves containing two variables. In leaves treated with a protonophore FCCP, the amplitude of FR light-induced changes ΔA 810 was strongly suppressed, indicating that the rate of CET is controlled by the pH gradient across the thylakoid membrane.  相似文献   

3.
The polyphasic patterns of fluorescence induction rise in pea leaves in vivo and after the treatment with ionophores have been studied using a Plant Efficiency Analyzer. To analyze in detail photosystem II (PS II) electron transfer processes, an extended PS II model was applied, which included the sums of exponential functions to specify explicitly the light-driven formation of the transmembrane electric potential (ΔΨ(t)) as well as pH in the lumen (pHL(t)) and stroma (pHS(t)). PS II model parameters and numerical coefficients in ΔΨ(t), pHL(t), and pHS(t) were evaluated to fit fluorescence induction data for different experimental conditions: leaf in vivo or after ionophore treatment at low or high light intensity. The model imitated changes in the pattern of fluorescence induction rise due to the elimination of transmembrane potential in the presence of ionophores, when ΔΨ = 0 and pHL(t), pHS(t) changed to small extent relative to control values in vivo, with maximum ΔΨ(t) ∼ 90 mV and ΔΨ(t) ∼ 40 mV for the stationary state at ΔpH ≅ 1.8. As the light intensity was increased from 300 to 1200 μmol m−2 s−1, the heat dissipation rate constants increased threefold for nonradiative recombination of P680+Phe and by ∼30% for P680+QA. The parameters ΔΨ, pHS and pHL were analyzed as factors of PS II redox state populations and fluorescence yield. The kinetic mechanism of fluorescence quenching is discussed, which is related with light-induced lumen acidification, when +QA and P680+ recombination probability increases to regulate the QA reduction.  相似文献   

4.
Kinetic curves of absorbance changes induced by far-red light (FR, 830 nm) (A 830), which reflect redox transformations of PSI primary electron donor, P700, were examined in intact barley (Hordeum vulgare L.) leaves. In intact leaves, FR induced the biphasic increase in absorbance related to P700 photooxidation. Leaf treatment with methyl viologen or antimycin A suppressed the slow phase of P700 photooxidation, which was attained in such leaves within the first second of light exposure. With FR turned off, the previously increased absorbance at 830 nm dropped down to its initial level, thus reflecting P700+ reduction. In the control leaves, the kinetics of P700+ reduction consisted of three exponentially decaying components, with the corresponding half-times of 8.8 s (the slow component, with its magnitude comprising 24% of the total A 830 signal), 0.73 s (the middle component, 49% of A 830), and 0.092 s (the fast component, 26% of A 830). The rate of the fast component of P700+ reduction, following FR irradiation of leaves, was about ten times lower than that of the noncyclic electron transfer from PSII to PSI computed from A 830 relaxation after the abrupt offset of white light. The treatment of leaves with methyl viologen or antimycin A completely abolished the fast component of A 830 relaxation after FR exposure. It was concluded that the fast component is determined by the operation of ferredoxin-dependent cyclic electron transport around PSI. This study represents the first report on the identification of this pathway of electron transport in vivo and the estimation of its rate.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 325–330.Original Russian Text Copyright © 2005 by Bukhov, Egorova.  相似文献   

5.
The changes in electron transport within photosystem I (PSI) were studied in detached leaves of Cucumis sativus L. during the course of irradiation with moderate white light (300 mol photons m–2 s–1) at 4°C. When intact leaves were exposed to the combination of moderate light and low temperature, the amplitude of far-red light-induced P700 absorbance changes at 820 nm (A820), a relative measure of PSI, progressively decreased as the light treatment time increased. Almost no oxidation of P700 was noticeable after 5 h. Methyl viologen accelerated the oxidation of P700 to a steady-state level and also increased the magnitudes of A820 changes in photoinhibited leaves, reflecting the rapid removal of electrons from native carriers. Photoinhibition under moderate light and chilling temperature also accelerated the rate of P700+ reduction after far-red light excitation as the half-times of the two exponential components of P700+ decay curves decreased relative to the control ones. A detailed analysis of the kinetics of P700+ reduction using diuron alone or the combination of diuron and methyl viologen strongly favours an increased rate of electron donation from stromal reductants to PSI through the plastoquinone pool following photoinhibitory treatment. Importantly, the marked acceleration of P700+ re-reduction is the consequence of the irradiation of leaf segments at low temperature and not caused by chilling stress alone.Abbreviations A 0 and A 1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - FR Far-red light - F X , F A , and F B Iron–sulfur centers - MT Multiple-turnover flash - MV Methyl viologen - Ndh NAD(P)H-dehydrogenase - PQ Plastoquinone - PS Photosystem - P700 Reaction-center chlorophyll of PSI - ST Single-turnover flash  相似文献   

6.
Photon-induced absorbance changes at 830 nm (A830) related to redox transformations of P700, primary electron donor of photosystem 1 (PS1), were examined in barley leaves treated with diuron and methyl viologen. In such leaves, only soluble reductants localized in chloroplast stroma could serve as electron donors for P700+. A830 were induced by 1-min irradiation of leaves with actinic light (AL, 700±6 nm) of various irradiances. Two exponentially decaying components with half-times of 2.75 (fast component, relative magnitude of 62 % of A830) and 11.90 s (slow one, 38 % of A830) were distinguished in the kinetics of dark relaxation of A830 after leaf irradiation with saturating AL. The components reflecting P700+ dark reduction in two units of PS1 differed in the rate of electron input from stromal reductants. The decline in AL irradiance reduced steady state A830 magnitude, which was also accompanied by a decrease in the contribution of fast component to the overall P700+ dark reduction kinetics. The photon-response curves were obtained separately for rapidly and slowly decaying A830. The values of half-saturating irradiance were 0.106 and 0.035 mol m–2 s–1 for rapidly and slowly reduced PS1 units, respectively. The ratio of rate constants of P700+ dark reduction for rapidly and slowly reduced PS1 units was 1.4 times higher than the ratio of their half-saturating irradiances thus indicating higher relative antenna size in rapidly reduced PS1 units. The latter finding, taken together with higher relative amount of P700, favours the view that rapidly and slowly reduced PS1 units reflect P700+ reduction by stromal reductants in spatially separated PS1 and PS1 complexes.  相似文献   

7.
Chlorophyll fluorescence induction curves induced by an actinic pulse of red light follow different kinetics in dark-adapted plant leaves and leaves preilluminated with far-red light. This influence of far-red light was abolished in leaves infiltrated with valinomycin known to eliminate the electrical (Δφ) component of the proton-motive force and was strongly enhanced in leaves infiltrated with nigericin that abolishes the ΔpH component. The supposed influence of ionophores on different components of the proton motive force was supported by differential effects of these ionophores on the induction curves of the millisecond component of chlorophyll delayed fluorescence. Comparison of fluorescence induction curves with the kinetics of P700 oxidation in the absence and presence of ionophores suggests that valinomycin facilitates a build-up of a rate-limiting step for electron transport at the site of plastoquinone oxidation, whereas nigericin effectively removes limitations at this site. Far-red light was found to be a particularly effective modulator of electron flows in chloroplasts in the absence of ΔpH backpressure on operation of the electron-transport chain.  相似文献   

8.
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m2 s1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection.  相似文献   

9.
Chlamydomonas reinhardtii mutants D1-R323H, D1-R323D, and D1-R323L showed elevated chlorophyll fluorescence yields, which increased with decline of oxygen evolving capacity. The extra step K ascribed to the disturbance of electron transport at the donor side of PS II was observed in OJIP kinetics measured in mutants with a PEA fluorometer. Fluorescence decay kinetics were recorded and analyzed in a pseudo-wild type (pWt) and in mutants of C. reinhardtii with a Becker and Hickl single photon counting system in pico- to nanosecond time range. The kinetics curves were fitted by three exponentials. The first one (rapid, with lifetime about 300 ps) reflects energy migration from antenna complex to the reaction center (RC) of photosystem II (PS II); the second component (600–700 ps) has been assigned to an electron transfer from P680 to QA, while the third one (slow, 3 ns) assumingly originates from charge recombination in the radical pair [P680+• Pheo−•] and/or from antenna complexes energetically disconnected from RC II. Mutants showed reduced contribution of the first component, whereas the yield of the second component increased due to slowing down of the electron transport to QA. The mutant D1-R323L with completely inactive oxygen evolving complex did not reveal rapid component at all, while its kinetics was approximated by two slow components with lifetimes of about 2 and 3 ns. These may be due to two reasons: a) disconnection between antennae complexes and RC II, and b) recombination in a radical pair [P680+• Pheo−•] under restricted electron transport to QA. The data obtained suggest that disturbance of oxygen evolving function in mutants may induce an upshift of the midpoint redox potential of QA/QA couple causing limitation of electron transport at the acceptor side of PS II.  相似文献   

10.
Photoinduced changes in the redox state of photosystem I (PSI) primary donor, chlorophyll P700 were studied by measuring differential absorbance changes of pea leaves at 810 nm minus 870 nm (ΔA 810). The kinetics of ΔA 810 induced by 5-s pulses of white light were strongly affected by preillumination. In dark-adapted leaves, the light pulse caused a transient oxidation of P700 and its subsequent reduction. An identical pulse, applied after 30-s preillumination with white light, induced sequential appearance of two peaks of P700 oxidation. These kinetic differences of ΔA 810 reflect regulatory changes of electron flow on the donor and acceptor sides of PSI induced by illumination of leaf for 20–40 s. The amplitude of ΔA 810 second peak depended nonmonotonically on the dark interval preceding illumination: it increased with the length of dark period in the range 3–10 s and decreased upon longer dark intervals. The second wave of ΔA 810 disappeared after the treatment with combination of ionophores preventing ΔpH and electric potential formation at the thylakoid membrane. In leaves treated with monensin eliminating ΔpH only, the ΔA 810 signals become incompletely reversible and were characterized by slow relaxation in darkness. The results indicate an important role of electrochemical proton gradient in generation of the second wave of light-induced P700 oxidation.  相似文献   

11.
Changes in the redox states of photosystem I (PSI) and PSII in irradiated wheat leaves were studied after growing seedlings on a nitrogen-free medium or media containing either nitrate or ammonium. The content of P700, the primary electron donor of PSI was quantified using the maximum magnitude of absorbance changes at 830 nm induced by saturating white light. The highest content of P700 in leaves was found for seedlings grown on the ammonium-containing medium, whereas its lowest content was observed on seedlings grown in the presence of nitrate. At all irradiances of actinic light, the smallest accumulation of reduced QA was observed in leaves of ammonium-grown plants. Despite variations in light-response curves of P700 photooxidation and QA photoreduction, the leaves of all plants exposed to different treatments demonstrated similar relationships between steady-state levels of P700+ and QA . The accumulation of oxidized P700 up to 40% of total P700 content was not accompanied by significant QA photoreduction. At higher extents of P700 photooxidation, a linear relationship was found between the steady-state levels of P700+ and QA . The leaves of all treatments demonstrated biphasic patterns of the kinetics of P700+ dark reduction after irradiation by far-red light exciting specifically PSI. The halftimes of corresponding kinetic components were found to be 2.6–4 s (fast component) and 17–22 s (slow component). The two components of P700+ dark reduction were related to the existence of two PSI populations with different rates of electron input from stromal reductants. The magnitudes of these components differed for plants grown in the presence of nitrate, on the one hand, and plants grown either in the presence of ammonium or in the absence of nitrogen, on the other hand. This indicates the possible influence of nitrogen nutrition on synthesis of different populations of PSI in wheat leaves. The decrease in far-red light irradiance reduced the relative contribution of the fast component to P700+ reduction. The fast component completely disappeared at low irradiances. This finding indicates that the saturating far-red light must be applied to determine correctly the relative content of each PSI population in wheat leaves.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 165–171.Original Russian Text Copyright © 2005 by Dzhibladze, Polesskaya, Alekhina, Egorova, Bukhov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

12.
The adverse effect of low intensity, small band UV-B irradiation (λ = 305 ± 5 nm, I = 300 mW m−2) on PS II has been studied by comparative measurements of laser flash-induced changes of the absorption at 325 nm, ΔA325(t), as an indicator of redox changes in QA, and of the relative fluorescence quantum yield, F(t)/Fo, in PS II membrane fragments. The properties of untreated control were compared with those of samples where the oxygen evolution rate under illumination with continuous saturating light was inhibited by up to 95%. The following results were obtained: a) the detectable initial amplitude (at a time resolution of 30 μs) of the 325 nm absorption changes, ΔA325, remained virtually invariant whereas the relaxation kinetics exhibit significant changes, b) the 300 μs kinetics of ΔA325 dominating the relaxation in UV-B treated samples was largely replaced by a 1.3 ms kinetics after addition of MnCl2, c) the extent of the flash induced rise of the relative fluorescence quantum yield was severely diminished in UV-B treated PS II membrane fragments but the relaxation kinetics remain virtually unaffected. Based on these results the water oxidizing complex (WOC) is inferred to be the primary target of UV-B impairment of PS II while the formation of the ‘stable’ radical pair P680QA −● is almost invariant to this UV-B treatment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

14.
Zhu XG  Govindjee  Baker NR  deSturler E  Ort DO  Long SP 《Planta》2005,223(1):114-133
Chlorophyll a fluorescence induction (FI) is widely used as a probe for studying photosynthesis. On illumination, fluorescence emission rises from an initial level O to a maximum P through transient steps, termed J and I. FI kinetics reflect the overall performance of photosystem II (PSII). Although FI kinetics are commonly and easily measured, there is a lack of consensus as to what controls the characteristic series of transients, partially because most of the current models of FI focus on subsets of reactions of PSII, but not the whole. Here we present a model of fluorescence induction, which includes all discrete energy and electron transfer steps in and around PSII, avoiding any assumptions about what is critical to obtaining O J I P kinetics. This model successfully simulates the observed kinetics of fluorescence induction including O J I P transients. The fluorescence emission in this model was calculated directly from the amount of excited singlet-state chlorophyll in the core and peripheral antennae of PSII. Electron and energy transfer were simulated by a series of linked differential equations. A variable step numerical integration procedure (ode15s) from MATLAB provided a computationally efficient method of solving these linked equations. This in silico representation of the complete molecular system provides an experimental workbench for testing hypotheses as to the underlying mechanism controlling the O J I P kinetics and fluorescence emission at these points. Simulations based on this model showed that J corresponds to the peak concentrations of Q A QB (QA and QB are the first and second quinone electron acceptor of PSII respectively) and Q A Q B and I to the first shoulder in the increase in concentration of Q A Q B 2− . The P peak coincides with maximum concentrations of both Q A Q B 2− and PQH2. In addition, simulations using this model suggest that different ratios of the peripheral antenna and core antenna lead to differences in fluorescence emission at O without affecting fluorescence emission at J, I and P. An increase in the concentration of QB-nonreducing PSII centers leads to higher fluorescence emission at O and correspondingly decreases the variable to maximum fluorescence ratio (F v/F m).  相似文献   

15.
Coherent processes in an initial phase of charge transfer in reaction centers (RCs) of the triple mutant S(L178)K/G(M203)D/L(M214)H of Rhodobacter sphaeroides were investigated by difference (light — dark) absorption spectroscopy with 18 fsec time resolution. Electron transfer in the B cofactor branch is activated in this mutant, while the A-branch electron transfer is slowed in comparison with native RCs of Rba. sphaeroides. A bulk of absorption difference spectra was analyzed in the 940–1060 nm range (stimulated emission of excited bacteriochlorophyll dimer P* and absorption of bacteriochlorophyll anions BA and β, where β is a bacteriochlorophyll substituting the native bacteriopheophytin HA) and in the 735–775 nm range (bleaching of the absorption band of the bacteriopheophytin HB in the B-branch) in the −0.1 to 4 psec range of delays with respect to the moment of photoexcitation of P at 870 nm. Spectra were measured at 293 and 90 K. The kinetics of P* stimulated emission at 940 nm shows its decay with a time constant of ∼14 psec at 90 K and ∼18 psec at 293 K, which is accompanied by oscillations with a frequency of ∼150 cm−1. A weak absorption band is found at 1018 nm that is formed ∼100 fsec after excitation of P and reflects the electron transfer from P* to β and/or BA with accumulation of the P+β and/or P+BA states. The kinetics of ΔA at 1018 nm contains the oscillations at ∼150 cm−1 and distinct low-frequency oscillations at 20–100 cm−1; also, the amplitude of the oscillations at 150 cm−1 is much smaller at 293 than at 90 K. The oscillations in the kinetics of the 1018 nm band do not contain a 32 cm−1 mode that is characteristic for native Rba. sphaeroides RCs having water molecule HOH55 in their structure. The ΔA kinetics at 751 nm reflects the electron transfer to HB with formation of the P+HB state. The oscillatory part of this kinetics has the form of a single peak with a maximum at ∼50 fsec completely decaying at ∼200 fsec, which might reflect a reversible electron transfer to the B-branch. The results are analyzed in terms of coherent nuclear wave packet motion induced in the P* excited state by femtosecond light pulses, of an influence of the incorporated mutations on the mutual position of the energy levels of charge separated states, and of the role of water HOH55 in the dynamics of the initial electron transfer.  相似文献   

16.
The environmental temperature is one of the mainfactors affecting plant growth and development. Insummer, plants are frequently influenced by hightemperature. In recent years, global temperature wasremarkably elevated accompanied with the climaticchanges,…  相似文献   

17.
The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7–8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12–15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700+ (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA with the donor side of PSII.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - FO initial fluorescence level - Fv variable fluorescence - P700 primary electron donor of PSI - PSI, II photosystem I, II - QA (QA ) QB (QB ) primary and secondary stable electron acceptor of PSII in oxidized (reduced) state Supported by grant B6.1/88 DST, Govt. of India.  相似文献   

18.
After incubation at 42°C for more than 48 h, brown damages occurred on the stems of tobacco (Nicotiana tabacum L.) ndhC-ndhK-ndhJ deletion mutant (ΔndhCKJ), followed by wilt of the leaves, while less the phenotype was found in its wild type (WT). Analysis of the kinetics of post-illumination rise in chlorophyll fluorescence indicated that the PSI cyclic electron flow and the chlororespiration mediated by NAD(P)H dehydrogenase (NDH) was significantly enhanced in WT under the high temperature. After leaf disks were treated with methyl viologen (MV), photosynthetic apparatus of ΔndhCKJ exhibited more severe photo-oxidative damage, even bleaching of chlorophyll. Analysis of P700 oxidation and reduction showed that the NDH mediated cyclic electron flow probably functioned as an electron competitor with Mehler reaction, to reduce the accumulation of reactive oxygen species (ROS). When leaf disks were heat stressed at 42°C for 6 h, the photochemical activity declined more markedly in ΔndhCKJ than in WT, accompanied with more evident decrease in the amount of soluble Rubisco activase. In addition, the slow phase of millisecond-delayed light emission (ms-DLE) of chlorophyll fluorescence indicated that NDH was involved in the building-up of transthylakoid proton gradient (ΔpH), while the consumption of ΔpH was highly inhibited in ΔndhCKJ after heat stress. Based on the results, we supposed that the cyclic electron flow mediated by NDH could be stimulated under the heat stressed conditions, to divert excess electrons via chlororespiration pathway, and sustain CO2 assimilation by providing extra ΔpH, thus reducing the photooxidative damage.  相似文献   

19.
The changes in the Mg2+-dependent V-type ATPase activity and the Mg2+-ATP-dependent H+ pumping activity of the synaptic vesicles from the cerebral cortex of rats submitted to intermittent chronic (4 weeks) mild or severe hypoxia were evaluated. The adaptation to the chronic severe hypoxia increases both the ATPase and the H+ pumping activities which are inhibited by NEM with an exponential relationship between the IC50 values and the in vivo O2 concentration. The Mg2+-dependent increase in H+ pumping activity of synaptic vesicles from the rats subjected to in vivo chronic hypoxia may be antagonized by nigericin (dissipating ΔpH) and by FCCP (dissipating ΔpH and ΔΨSV). In contrast, valinomycin (dissipating the ΔΨSV and facilitating an enhancement in ΔpH) increases in vitro the H+ pumping activity that is inhibited by the addition of high concentration of K gluconate (reducing the rate of K+ efflux). The preincubation of vesicles from hypoxic rats with FCCP, but not with nigericin, inhibits the valinomycin-increased H+ pumping activity.l-glutamate increases the H+ pumping activity in synaptic vesicles from the cerebral cortex of chronic hypoxic rats, whereas other amino acids (i.e.,l-aspartate andl-homocysteate) and glutamate analogs (i.e., quisqualate and ibotenate) are ineffective. The adaptation to both chronic intermittent severe hypoxia and in vivo treatment with posatireline causes a decrease in the Mg2+-ATPase activity consistent with the decrease in the H+ pumping one of the synaptic vesicles. The addition of nigericin into incubation medium magnifies the decrease in the H+ pumping activity, while the addition of FCCP is ineffective, suggesting that the treatment with posatireline interferes with the ΔΨSV component in the of the synaptic vesicles from rats submitted to chronic hypoxia. The results of the in vivo and in vitro experiments suggest that in the synaptic vesicles from hypoxic rats the ΔΨSV component in may be most effective in increasing the Mg2+-ATP-dependent H+ pumping activity.  相似文献   

20.
The light-response curves of P700 oxidation and time-resolved kinetics of P700+ dark re-reduction were studied in barley leaves using absorbance changes at 820 nm. Leaves were exposed to 45 °C and treated with either diuron or diuron plus methyl viologen (MV) to prevent linear electron flow from PS II to PSI and ferredoxin-dependent cyclic electron flow around PSI. Under those conditions, P700+ could accept electrons solely from soluble stromal reductants. P700 was oxidized under weak far-red light in leaves treated with diuron plus MV, while identical illumination was nearly ineffective in diuron-treated leaves in the absence of MV. When heat-exposed leaves were briefly illuminated with strong far-red light, which completely oxidized P700, the kinetics of P700+ dark reduction was fitted by a single exponential term with half-time of about 40 ms. However, two first-order kinetic components of electron flow to P700+ (fast and slow) were found after prolonged leaf irradiation. The light-induced modulation of the kinetics of P700+ dark reduction was reversed following dark adaptation. The fast component (half time of 80–90 ms) was 1.5 larger than the slow one (half time of about 1 s). No kinetic competition occurred between two pathways of electron donation to P700+ from stromal reductants. This suggests the presence of two different populations of PSI. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号