首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F. MATHIEU, I.S. SUWANDHI, N. REKHIF, J.B. MILLIERE AND G. LEFEBVRE. 1993. One hundred and sixty-five isolates of Leuconostoc spp. were tested for bacteriocin production. Only one strain, Leuc. mesenteroides ssp. mesenteroides FR 52, isolated from a raw milk, produced a bacteriocin which was named Mesenterocin 52. This bacteriocin inhibited other Leuconostoc strains and several strains of Enterococcus and Listeria spp. No activity was found against lactococci and lactobacilli. The antibacterial spectrum differed from that of previously described Leuconostoc bacteriocins. Mesenterocin 52 was secreted into the medium during the growth phase. It was inactivated with protease treatments. At pH 7.0 it had a relative stability after heating at 100C (15 min), but it had a greater stability at pH 4.5 than at pH 7.0 after 6 h at 80C. The apparent molecular mass was estimated to be less than 10 kDa by ultrafiltration. Mesenterocin 52 showed a bactericidal effect on Leuconostoc paramesenteroides DSM 20288.  相似文献   

2.
Leuconostoc mesenteroides UL5 was found to produce a bacteriocin, referred as mesenterocin 5, active against Listeria monocytogenes strains but with no effect on several useful lactic acid bacteria. The antimicrobial substance is a protein, since its activity was completely destroyed following protease (pronase) treatment. However, it was relatively heat stable (100 degrees C for 30 min) and partially denaturated by chloroform. The inhibitory effect of the bacteriocin on sensitive bacterial strains was determined by a critical-dilution micromethod. Mutants of L. mesenteroides UL5 which had lost the capacity to produce the bacteriocin were obtained. The mutant strain was stable and phenotypically identical to parental cells and remained resistant to the bacteriocin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect bacteriocin activity corresponding to an apparent molecular mass of about 4.5 kDa.  相似文献   

3.
Leuconostoc mesenteroides UL5 was found to produce a bacteriocin, referred as mesenterocin 5, active against Listeria monocytogenes strains but with no effect on several useful lactic acid bacteria. The antimicrobial substance is a protein, since its activity was completely destroyed following protease (pronase) treatment. However, it was relatively heat stable (100 degrees C for 30 min) and partially denaturated by chloroform. The inhibitory effect of the bacteriocin on sensitive bacterial strains was determined by a critical-dilution micromethod. Mutants of L. mesenteroides UL5 which had lost the capacity to produce the bacteriocin were obtained. The mutant strain was stable and phenotypically identical to parental cells and remained resistant to the bacteriocin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect bacteriocin activity corresponding to an apparent molecular mass of about 4.5 kDa.  相似文献   

4.
A.M. REVOL-JUNELLES, R. MATHIS, F. KRIER, Y. FLEURY, A. DELFOUR AND G. LEFEBVRE. 1996. Mesenterocin 52, a bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides FR52, was purified from producing cells by the adsorption-desorption method, combined with reverse-phase high-performance liquid chromatography. The elution profile revealed the presence o two inhibitory peaks of activity, each displaying different inhibitory spectra. Mesenterocin 52A possessed a broad inhibitory spectrum, including anti- Listeria activity, while Mesenterocin 52B was only active against Leuconostoc spp. The amino acid sequence and Mr of Mesenterocin 52A appeared identical to the previously described Mesentericing Y105. In contrast, Mesenerocin 52B possessed a Mr of 3446 Da, corresponding to 32 amino acids and a sequence that shared no homology with known bacteriocins:  相似文献   

5.
The influence of temperature and pH on growth of Leuconostoc mesenteroides subsp. mesenteroides FR52 and production of its two bacteriocins, mesenterocin 52A and mesenterocin 52B, was studied during batch fermentation. Temperature and pH had a strong influence on the production of the two bacteriocins which was stimulated by slow growth rates. The optimal temperature was 20 °C for production of mesenterocin 52A and 25 °C for mesenterocin 52B. Optimal pH values were 5.5 and 5.0 for production of mesenterocin 52A and mesenterocin 52B respectively. Thus, by changing the culture conditions, production of one bacteriocin can be favoured in relation to the other. The relationship between growth and specific production rates of the two bacteriocins, as a function of the culture conditions, showed different kinetics of production and the presence of several peaks in the specific production rates during growth. Received: 13 February 1998 / Received revision: 27 May 1998 / Accepted: 1 June 1998  相似文献   

6.
Few studies have been published on the effects of two bacteriocins combinations and particularly on combinations of two bacteriocins with different structures produced by the same strain. In this work, the actions of mesenterocin 52A (class IIa) and mesenterocin 52B (class II), produced by Leuconostoc mesenteroides subsp. mesenteroides FR 52, were studied on strains susceptible to only one bacteriocin or to both. In broth, combination of mesenterocins enhanced the adaptation time of the strain susceptible to the both mesenterocins (48 h vs 17 h with only one bacteriocin). In agar medium, mesenterocins displayed, as expected, a synergistic effect on this strain (FICindex < 1), but also on the two strains susceptible to only one mesenterocin. This original result was probably due to membrane composition modifications induced by the mesenterocin that enhanced bacteriocin action. Thus, this hurdle technique seems to be interesting in food preservation in terms of minimizing bacteriocin concentrations.  相似文献   

7.
Abstract Immunity proteins are thought to protect bacteriocin-producing bacterial strains against the bactericidal effects of their own bacteriocin. The immunity protein which protects the lactic acid bacterium Leuconostoc mesenteroides against mesentericin Y10537 bacteriocin was detected and localized by immunofluorescence and electron microscopy, using antibodies directed against the C-terminal end of the predicted immunity protein. The antibodies recognized the immunity proteins of various strains of Leuconostoc , including Leuconostoc mesenteroides and Leuconostoc gelidum . This study demonstrated that immunity proteins produced by Leuconostoc mesenteroides accumulated in the cytoplasmic compartment of the bacteria. This is in contrast with other known immunity proteins, such as the colicin immunity proteins, which are integral membrane proteins possessing three to four transmembrane domains.  相似文献   

8.
Leuconostoc mesenteroides Y105 and L. mesenteroides FR52 produce both mesentericin Y105 and B105, in equal amounts. The mesentericin operons of L. mesenteroides FR52 and Y105 which are involved in mesentericin Y105 and B105 production, were both sequenced and compared. Differences were limited to the two genes, mesD and mesE, which encode the dedicated transport system of mesentericin Y105. Analysis of mesentericin non-producing mutants and complementation experiments demonstrated that the major role of the membrane fusion protein, MesE, was in bacteriocin secretion for both strains. Moreover, the secretion machinery MesDE was demonstrated to be capable of transportation and maturation of the two pre-bacteriocins, mesentericin Y105 and B105. We also demonstrate that although MesDEs from strains Y105 and FR52 have significant sequence differences, both transporters were capable of assuring secretion of either bacteriocin.  相似文献   

9.
A Leuconostoc mesenteroides ssp. mesenteroides was isolated from goat's milk on the basis of its ability to inhibit the growth of Listeria monocytogenes. The antimicrobial effect was due to the presence in the culture medium of a compound, named mesentericin Y105, excreted by the Leuconostoc mesenteroides Y105. The compound displayed known features of bacteriocins from lactic acid bacteria. It appeared as a proteinaceous molecule exhibiting a narrow inhibitory spectrum limited to genus Listeria. The apparent relative molecular mass, as indicated by activity detection after SDS-PAGE, was 2.5-3.0 kDa. The bacteriocin was purified to homogeneity by a simple three-step procedure: a crude supernatant obtained from an early-stationary-phase culture in a defined medium was subjected to affinity chromatography on a blue agarose column, followed by ultrafiltration through a 5 kDa cut-off membrane, and finally by reverse-phase HPLC on a C4 column. Microsequencing of the pure bacteriocin and of tryptic fragments showed that mesentericin Y105 is a 36 amino acid polypeptide whose primary structure is close to that of leucocin A-UAL 187, which contains an extra residue at the C-terminus and displays only two differences in the overlapping sequence. However, unlike leucocin A-UAL 187, mesentericin Y105 displayed a bactericidal mode of action.  相似文献   

10.
Dextrans are the main exopolysaccharides produced by Leuconostoc species. Other dextran-producing lactic acid bacteria include Streptococci, Lactobacilli, and Weissella species. Commercial production and structural analysis has focused mainly on dextrans from Leuconostoc species, particularly on Leuconostoc mesenteroides strains. In this study, we used NMR spectroscopy techniques to analyze the structures of dextrans produced by Leuconostoc citreum E497 and Weissella confusa E392. The dextrans were compared to that of L. mesenteroides B512F produced under the same conditions. Generally, W. confusa E392 showed better growth and produced more EPS than did L. citreum E497 and L. mesenteroides B512F. Both L. citreum E497 and W. confusa E392 produced a class 1 dextran. Dextran from L. citreum E497 contained about 11% alpha-(1-->2) and about 3.5% alpha-(1-->3)-linked branches whereas dextran from W. confusa E392 was linear with only a few (2.7%) alpha-(1-->3)-linked branches. Dextran from W. confusa E392 was found to be more linear than that of L. mesenteroides B512F, which, according to the present study, contained about 4.1% alpha-(1-->3)-linked branches. Functionality, whether physiological or technological, depends on the structure of the polysaccharide. Dextran from L. citreum E497 may be useful as a source of prebiotic gluco-oligosaccharides with alpha-(1-->2)-linked branches, whereas W. confusa E392 could be a suitable alternative to widely used L. mesenteroides B512F in the production of linear dextran.  相似文献   

11.
Of 215 leuconostocs isolated from field grass, natural whey cultures and water-buffalo milk, 178 were identified as Leuconostoc mesenteroides ssp. mesenteroides while 37 strains could not be identified Biochemical characterization allowed seven groups to be defined. Representative strains of each group and different habitat and nine reference strains were selected for further analyses. Protein profiles appeared suitable for species discrimination, but did not differentiate between the three subspecies of Leuc. mesenteroides. The technique also showed some differences among equivocal strains. DNA fingerprinting for most strains of Leuc. mesenteroides ssp. mesenteroides examined showed a different restriction pattern from that of the type strain. Ribotyping was not useful for discriminating species and subspecies of the genus Leuconostoc: Leuc. mesenteroides ssp. mesenteroides and ssp. dextranicum showed the same ribopattern as Leuc. lactis while Leuc. mesenteroides ssp. cremoris exhibited a pattern distinct from all the other species examined. On the basis of ARDRA-PCR, two main groups could be distinguished: the larger group included Leuc. mesenteroides, Leuc. lactis, Leuc. pseudomesenteroides and some unidentifiable strains; the second one included Leuc. citreum, Leuc. fallax, Weissella paramesenteroides and some unidentified strains.  相似文献   

12.
A 1.8-kb cryptic plasmid pFR18 was isolated from Leuconostoc mesenteroides ssp. mesenteroides FR52 and characterized. The identification of single-stranded DNA intermediate (ssDNA) in Leuconostoc demonstrated that the replication of pFR18 is directed by a rolling-circle mechanism (RCR). Sequence analysis revealed a single open reading frame (rep18) encoding a putative 335-amino acid protein homologous to the pT181 replicase. Furthermore, a putative double strand origin similar to that of the pT181 plasmid family was identified. A cloning vector was developed on the basis of the pFR18 replicon by inserting an erythromycin resistance cassette within a non-essential region of the plasmid. The resulting construction was able to transform Lactobacillus sake and various species of Leuconostoc. It was stable in L. mesenteroides, however, the segregational stability of a pFR18 derivative containing large Escherichia coli DNA fragments was affected. Nevertheless, the new RCR plasmid pFR18 may be useful for the construction of food grade vectors.  相似文献   

13.
A new real-time PCR procedure was developed for the specific detection and quantification of Leuconostoc mesenteroides in meat products. It is a TaqMan assay based on 23S rRNA gene targeted primers and probe. Specificity was evaluated using purified DNA from 132 strains: 102 lactic acid bacteria (LAB), including 57 reference strains and 46 food isolates, belonging to genus Leuconostoc and related genera, and 30 non-LAB strains. Quantification was linear over at least 5 log units using both serial dilutions of purified DNA and calibrated cell suspensions from Leuconostoc mesenteroides ssp. dextranicum CECT 912T. This assay was able to detect at least five genomic equivalents, using purified DNA or 59 CFU per reaction when using calibrated cell suspensions. It performed successfully when tested on an artificially inoculated meat product, with a minimum threshold of 10(4) CFU g(-1) for the accurate quantification of Leuconostoc mesenteroides.  相似文献   

14.
Leuconostoc mesenteroides Y105, previously described for production of mesentericin Y105, an anti-Listeria bacteriocin, was shown to secrete a second bacteriocin. The latter was purified, and its molecular mass of 3446 Da, obtained by mass spectrometric analysis, indicates that this bacteriocin should be identical to mesenterocin 52B [Revol-Junelles et al., Lett Appl Microbiol 23:120, 1996]. This second bacteriocin produced by L. mesenteroides Y105 was named mesentericin B105. Its structural gene, mesB, was then localized by a reverse genetic approach, cloned, and sequenced. MesB was found on the pHY30 plasmid, next to mesY gene clusters. Curing experiments led to isolation of two L. mesenteroides Y105 derivatives, named L. mesenteroides Y29 and Y30. The latter had lost pHY30 plasmid, encoding bacteriocin determinants, therefore explaining its phenotype (MesY-, MesB-). On the contrary, Y29 derivative still harbors the pHY30 but did not produce any bacteriocin. Thus, its phenotype could likely result from a point mutation within a gene, probably encoding a protein involved in production of both mesentericin Y105 and mesentericin B105. Received: 9 May 1999 / Accepted: 8 June 1999  相似文献   

15.
Mesenterocin 52A (Mes 52A) is a class IIa bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides FR52, active against Listeria sp. The interaction of Mes 52A with bacterial membranes of two sensitive Listeria strains has been investigated. The Microbial Adhesion to Solvents test used to study the physico-chemical properties of the surface of the two strains indicated that both surfaces were rather hydrophilic and bipolar. The degree of insertion of Mes 52A in phospholipid bilayer was studied by fluorescence anisotropy measurements using two probes, 1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and DPH, located at different positions in the membrane. TMA-DPH reflects the fluidity at the membrane surface and DPH of the heart. With Listeria ivanovii CIP 12510, Mes 52A induced an increase only in the TMA-DPH fluorescence anisotropy, indicating that this bacteriocin affects the membrane surface without penetration into the hydrophobic core of the membrane. No significant K+ efflux was measured, whereas the ΔΨ component of the membrane potential was greatly affected. With Listeria innocua CIP 12511, Mes 52A caused an increase in the fluorescence of TMA-DPH and DPH, indicating that this peptide inserts deeply in the cytoplasmic membrane of this sensitive strain. This insertion led to K+ efflux, without perturbation of ΔpH and a weak modification of ΔΨ, and is consistent with pore formation. These data indicate that Mes 52A interacts at different positions of the membrane, with or without pore formation, suggesting two different mechanisms of action for Mes 52A depending on the target strain.  相似文献   

16.
Randomly amplified polymorphic DNA analysis using primer 239 (5' CTGAAGCGGA 3') was performed to characterize Leuconostoc sp. strains. All the strains of Leuconostoc mesenteroides subsp. mesenteroides (with the exception of two strains), two strains formerly identified as L. gelidum, and one strain of Leuconostoc showed a common band at about 1.1 kb. This DNA fragment was cloned and sequenced in order to verify its suitability for identifying L. mesenteroides subsp. mesenteroides strains.  相似文献   

17.
The cell wall constituents of Leuconostoc citrovorum 8082, L. mesenteroides 10830a, and L. mesenteroides 11449 have been ascertained. All three strains contained glycerol. Glucose and rhamnose were the major reducing sugar constituents. Alanine, glutamic acid, lysine, glucosamine, and muramic acid were the principal amino acids and amino sugars in all three strains. In addition, strain 10830a contained l-serine as a major cell wall component. Quantitative amino acid analyses indicate that glutamic acid, lysine, glucosamine, muramic acid, and serine may be present in the cell walls in equimolar amounts and that alanine is present in three to four times these quantities. The similarities and differences between the cell wall constituents of the leuconostocs and those of the lactobacilli and streptococci are discussed.  相似文献   

18.
To explain the competition for nitrogenous nutrients observed in mixed strain cultures of Lactococcus lactis and Leuconostoc mesenteroides, the utilization of peptides as a source of essential amino acids for growth in a chemically defined medium was compared in 12 strains of dairy origin. Both species were multiple amino acid auxotrophs and harboured a large set of intracellular peptidases. Lactococcus lactis can use a wide variety of peptides up to 13 amino acid residues whereas Leuc. mesenteroides assimilated only shorter peptides containing up to seven amino acids. Growth was limited by the transport of peptides and not by their hydrolysis. The nutritional value of peptides varied with the strains and the composition of the peptides, L. lactis being advantaged over Leuc. mesenteroides.  相似文献   

19.
The aim of this study was to investigate the effect of complex nutrients on microbial growth and bacteriocin production, in order to improve bacteriocin synthesis during the growth cycle of Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. The fermentations were conducted at the optimum pH and temperature for bacteriocin production (pH 5.5+/-0.1 and temperature 25+/-0.1 degrees C). Because of their association with the final biomass, conditions favouring the increase of the produced biomass resulted in the increase of bacteriocin activity in the growth medium. Since the produced final biomass and the final concentration of the bacteriocins were associated with the amount of the carbon (glucose) and nitrogen source, better growth of the lactic acid bacterial strains favoured the increase of the specific bacteriocin production. Additionally, the bacteriocin production was influenced by carbon/nitrogen ratio.  相似文献   

20.
Citrate metabolism was studied in non-growing cells of Leuconostoc mesenteroides subsp. mesenteroides and subsp. dextranicum with respect to energetics, formation of degradation products and stoichiometry. The use of selective ionophores and uncoupler showed that citrate utilization was coupled to the proton motive force generated by ATP hydrolysis. Differences in citrate metabolism observed in 20 Leuconostoc strains were related to strains but not to the species or subspecies studied. Citrate metabolism was stimulated by glucose up to a concentration of 25 mmol 1-1 and decreased at higher concentrations. The main degradation products resulting from the co-metabolism of citrate (10 mmol 1-1) and glucose (2 mmol 1-1) were acetate, lactate and pyruvate. Only four Leuconostoc strains produced low levels of acetoin and diacetyl. No strains produced ethanol or acetaldehyde. Citrate degradation ability was stable for at least 130 generations in 81% of the Leuconostoc strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号