首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exhaled acetone is measured to estimate exposure or monitor diabetes and congestive heart failure. Interpreting this measurement depends critically on where acetone exchanges in the lung. Health professionals assume exhaled acetone originates from alveolar gas exchange, but experimental data and theoretical predictions suggest that acetone comes predominantly from airway gas exchange. We measured endogenous acetone in the exhaled breath to evaluate acetone exchange in the lung. The acetone concentration in the exhalate of healthy human subjects was measured dynamically with a quadrupole mass spectrometer and was plotted against exhaled volume. Each subject performed a series of breathing maneuvers in which the steady exhaled flow rate was the only variable. Acetone phase III had a positive slope (0.054+/-0.016 liter-1) that was statistically independent of flow rate. Exhaled acetone concentration was normalized by acetone concentration in the alveolar air, as estimated by isothermal rebreathing. Acetone concentration in the rebreathed breath ranged from 0.8 to 2.0 parts per million. Normalized end-exhaled acetone concentration was dependent on flow and was 0.79+/-0.04 and 0.85+/-0.04 for the slow and fast exhalation rates, respectively. A mathematical model of airway and alveolar gas exchange was used to evaluate acetone transport in the lung. By doubling the connective tissue (epithelium+mucosal tissue) thickness, this model predicted accurately (R2=0.94+/-0.05) the experimentally measured expirograms and demonstrated that most acetone exchange occurred in the airways of the lung. Therefore, assays using exhaled acetone measurements need to be reevaluated because they may underestimate blood levels.  相似文献   

2.
Exercise-induced oxidative stress (EIOS) refers to a condition where the balance of free radical production and antioxidant systems is disturbed during exercise in favour of pro-oxidant free radicals. Breath ethane is a product of free radical-mediated oxidation of cell membrane lipids and is considered to be a reliable marker of oxidative stress. The heatshock protein, haem oxygenase, is induced by oxidative stress and degrades haemoglobin to bilirubin, with concurrent production of carbon monoxide (CO). The aim of this study was to investigate the effect of maximal exercise on exhaled ethane and CO in human, canine, and equine athletes. Human athletes (n = 8) performed a maximal exercise test on a treadmill, and canine (n = 12) and equine (n = 11) athletes exercised at gallop on a sand racetrack. Breath samples were taken at regular intervals during exercise in the human athletes, and immediately before and after exercise in the canine and equine athletes. Breath samples were stored in gas-impermeable bags for analysis of ethane by laser spectroscopy, and CO was measured directly using an electrochemical CO monitor. Maximal exercise was associated with significant increases in exhaled ethane in the human, equine, and canine athletes. Decreased concentrations of exhaled CO were detected after maximal exercise in the human athletes, but CO was rarely detectable in the canine and equine athletes. The ethane breath test allows non-invasive and real-time detection of oxidative stress, and this method will facilitate further investigation of the processes mediating EIOS in human and animal athletes.  相似文献   

3.
Oxidative stress may initiate lipid peroxidation that generates ethane. Ethane, at low concentrations, is eliminated by pulmonary exhalation. Previous methods have not allowed frequent sampling, thus ethane kinetics has not been studied in man. A validated method over the range 3.8-100,000 ppb with a limit of quantitation of 3.8 ppb (CV 9.3%) based on cryofocusing technique of a 60 ml breath sample allowed frequent sampling. Due to a rapid analytical procedure batches of more than 100 samples may be analyzed. In human volunteers (24-55 years) uptake was studied for up to 23 min (n=9), elimination was studied for 210 min (n=9). Ethane was inhaled (concentrations varied from 16 to 29 ppm (parts per million)) through a non-rebreathing system; sampling was performed with short intervals from the expiratory limb. Samples were also drawn from the inhalatory limb. Ninety-five percent of steady state (inspired) concentration was reached within 1.75 min. Five percent of the initially inhaled concentrations was found in exhaled air 1.5 min after termination of inhalation. A terminal mean half life of 31 min for ethane was also observed. The data indicate that frequent sampling will be necessary to capture relevant changes in breath ethane.  相似文献   

4.
Abstract

Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml–1 CO2 (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml?1 CO2 (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=?2.8, p=0.026, CI=?5.2 to ?0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.  相似文献   

5.
Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p<0.05) but is not significantly more effective than reported 3-stage impactor method (p>0.05). In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.  相似文献   

6.
A simple method is described for concentrating ethane from large volumes of air; the sensitivity limits for detecting exhaled ethane are increased by 100-fold or more. The method is intended for monitoring low-level ethane exhalation resulting from peroxidative damage to tissue lipids in vivo. Various adsorbents for concentrating ethane and ethylene were tested; in addition, the permeability characteristics of various types of tubing were studied in order to construct a suitable, inexpensive breath collection chamber for laboratory animals. Recommended adsorbents are activated charcoal and molecular sleve; activated alumina is a poor adsorbent. Polyvinyl and Teflon tubing are impermeable, whereas latex and silicone tubing are permeable to ethane. When ethane and ethylene are injected intraperitoneally into mice, the exhalation of these volatile hydrocarbons is readily monitored in the breath collection chamber. Whereas ethylene and the C3–C5 alkanes probably are metabolized by mice, ethane apparently is not; however, a portion of the ethane appears to be trapped by absorption within body tissues.  相似文献   

7.
A major component of the organ injury mediated by toxic oxidants, such as seen following reperfusion of the ischemic liver, is due to the peroxidation of polyunsaturated fatty acids, especially of cell membranes. We utilized the measurement of exhaled breath ethane, a metabolic product unique to oxidant-mediated lipid peroxidation, as a noninvasive indicator of this process in swine liver subjected to warm ischemia/reperfusion. Under rigorously controlled anesthesia conditions, pig livers were subjected to 2 h of warm total ischemia, followed by reperfusion in situ. Expired air was collected and its ethane content quantitated by a novel gas chromatographic technique. The time course of breath ethane generation correlated closely with the appearance of hepatocellular injury as measured by impairment of Factor VII generation and other measures of liver integrity. Moreover, the administration of the specific superoxide free radical scavenger, superoxide dismutase (SOD), significantly attenuated both the elaboration of ethane and the hepatocellular injury. These findings not only provide confirmation of the previously reported link between hepatocellular injury by free radicals generated at reperfusion, but also establish the use of expired breath ethane analysis as a sensitive, specific, and noninvasive indicator of the injury process in real time.  相似文献   

8.
We report a simple gaseous sensor for the sensitive detection of trace 2‐propanol in exhaled breath using in situ enrichment and cataluminescence detection method on the surface of nanomaterials. The influences of heating voltage and absorption time on the CTL intensity were discussed, respectively. In the selected conditions, the linear range of 2‐propanol concentration is 60–600 ppbv and the detection of limit is 11 ppbv. Moreover, the lifetime and selectivity of the sensor were also investigated. It has the potential to diagnostic volatile organic compounds in human breath. Copyright © 2010 John Wiley & Sons, Ltd  相似文献   

9.
Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml(-1) CO(2) (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml(-1) CO(2) (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=-2.8, p=0.026, CI=-5.2 to -0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.  相似文献   

10.
Oxidative stress may initiate lipid peroxidation that generates ethane. Ethane, at low concentrations, is eliminated by pulmonary exhalation. Previous methods have not allowed frequent sampling, thus ethane kinetics has not been studied in man. A validated method over the range 3.8-100,000 ppb with a limit of quantitation of 3.8 ppb (CV 9.3%) based on cryofocusing technique of a 60 ml breath sample allowed frequent sampling. Due to a rapid analytical procedure batches of more than 100 samples may be analyzed. In human volunteers (24-55 years) uptake was studied for up to 23 min &lt;formula&gt;(&lt;italic&gt;n&lt;/italic&gt;=9)&lt;/formula&gt;, elimination was studied for 210 min &lt;formula&gt;(&lt;italic&gt;n&lt;/italic&gt;=9).&lt;/formula&gt; Ethane was inhaled (concentrations varied from 16 to 29 ppm (parts per million)) through a non-rebreathing system; sampling was performed with short intervals from the expiratory limb. Samples were also drawn from the inhalatory limb. Ninety-five percent of steady state (inspired) concentration was reached within 1.75 min. Five percent of the initially inhaled concentrations was found in exhaled air 1.5 min after termination of inhalation. A terminal mean half life of 31 min for ethane was also observed. The data indicate that frequent sampling will be necessary to capture relevant changes in breath ethane.  相似文献   

11.
目的建立一种顶空气相色谱-串联质谱法(HS-GC/MS)快速检测人的粪便、血浆、唾液、呼出气体中短链脂肪酸(SCFAs)的方法,初步探索人的粪便、血浆、唾液、呼出气体中短链脂肪酸的相关性。方法样品无需处理直接封存于顶空进样瓶中,顶空进样;采用DB-FFAP毛细管柱(30 m×0.25 mm×0.25μm)分离;全扫描模式检测。结果人的粪便、血浆、唾液、呼出气体中均含有短链脂肪酸。在人的粪便、唾液样本中均检测到8个短链脂肪酸(乙酸、丙酸、异丁酸、丁酸、异戊酸、戊酸、异己酸、己酸);血浆、呼出气体样本中均检测到7个短链脂肪酸(未检测到异己酸)。结论初步推测人的粪便、血浆、唾液、呼出气体中的短链脂肪酸具有一定的相关性。本方法简单、快速、灵敏,可用于人的生物样品中短链脂肪酸的快速检测。  相似文献   

12.
Lipid peroxidation can be monitored by measuring one or several highly volatile alkanes in exhaled air. The concentrations of ethane and pentane were determined in breath samples from patients with alcoholic and non-alcoholic cirrhosis as well as from healthy subjects. The greatest increase of exhaled pentane was found in 17 patients with alcoholic cirrhosis (2.85 +/- 2.37 pmol/ml) in comparison with 10 patients with non-alcoholic cirrhosis (0.71 +/- 0.33 pmol/ml) and 10 control subjects (0.59 +/- 0.41 pmol/ml). On the contrary, no significant difference was detected as far as exhaled ethane is concerned. These data suggest that: a) gas-chromatographic determination of exhaled pentane may play a significant role in detecting alcohol-induced liver disease; b) hepatic injury may be mediated by lipid peroxidation in these patients.  相似文献   

13.
Interaction of active oxygen species with polyunsaturated fatty acids (PUFA) results in a series of reactions called lipid peroxidation. During the process of peroxidation of polyunsaturated fatty acids there is a scission of an alkane fragment extending from the methyl end of the fatty acid to the double bond. Thus, with a w-6 polyunsaturated fatty acid pentane is released, and with a w-3 polyunsaturated fatty acid ethane is released. These hydrocarbons are distributed in the body, partly metabolized, and excreted in the breath, making it possible to estimate the magnitude of in vivo lipid peroxidation by measuring pentane and ethane exhaled in breath. Advantages of this method are discussed as well as limitations and possible sources of error.  相似文献   

14.
Breath is considered to be an easily accessible matrix, whose chemical composition relates to compounds present in blood. Therefore many metabolites are expected in exhaled breath, which may be used in the future for the development of diagnostic methods. In this article, a new strategy to discriminate between exhaled endogenous metabolites and exhaled exogenous contaminants by direct high-resolution mass spectrometry is introduced. The analysis of breath in real-time by secondary electrospray ionization mass spectrometry allows to interpret the origin of exhaled compounds. Exhaled metabolites that originate in the respiratory system show reproducible and significant patterns if plotted in real-time (>1 data point per second). An exhaled metabolite shows a signal that tends to rise at the end of a complete (forced) exhalation. In contrast, exogenous compounds, which may be present in room air, are gradually diluted by the air from the deeper lung and therefore show a trend of falling intensity. Signals found in breath by using this pattern recognition are linked to potential metabolites by comparison with online databases. In addition to this real-time approach, it is also shown how to combine this method with classical analytical methods in order to potentially identify unknown metabolites. Finally exhaled compounds following smoking a cigarette, chewing gum, or drinking coffee were investigated to underline the usefulness of this new approach.  相似文献   

15.
We show that an animal's past and present diet can be distinguished through the delta(13)C of exhaled CO(2). The exhaled delta(13)C of 12 pigeons fed solely corn (a C(4) plant) for 30 days was -13.63 per thousand (+/-0.30). We then fed six pigeons wheat (a C(3) plant) and continued to feed the other six corn. After 48 h the exhaled delta(13)C from the corn-fed pigeons was unchanged; that from the wheat-fed pigeons was -20.5 per thousand. We then fasted three of the wheat-fed pigeons for 3 days, after which their exhaled delta(13)C was -14.96 per thousand, while it was -13.57 per thousand in corn-fed pigeons, and -22.22 per thousand in pigeons that continued on wheat. Thus, we could infer diet from the (13)C/(12)C ratios of exhaled CO(2). Significantly, breath samples from fasted pigeons also revealed that they had eaten corn when their lipid stores were formed. We also showed that the change in the (13)C/(12)C of exhaled CO(2) had a half-life of approximately 3.5 h, and a time constant of approximately 6.7 h. Thus one can infer past and present diet from exhaled delta(13)C alone, if the initial breath sample is followed by a fasted breath sample, without harming the animal or having to recapture it successively.  相似文献   

16.
Effects of ventilation on the collection of exhaled breath in humans.   总被引:1,自引:0,他引:1  
A computerized system has been developed to monitor tidal volume, respiration rate, mouth pressure, and carbon dioxide during breath collection. This system was used to investigate variability in the production of breath biomarkers over an 8-h period. Hyperventilation occurred when breath was collected from spontaneously breathing study subjects (n = 8). Therefore, breath samples were collected from study subjects whose breathing were paced at a respiration rate of 10 breaths/min and whose tidal volumes were gauged according to body mass. In this "paced breathing" group (n = 16), end-tidal concentrations of isoprene and ethane correlated with end-tidal carbon dioxide levels [Spearman's rank correlation test (r(s)) = 0.64, P = 0.008 and r(s) = 0.50, P = 0.05, respectively]. Ethane also correlated with heart rate (r(s) = 0.52, P < 0.05). There was an inverse correlation between transcutaneous pulse oximetry and exhaled carbon monoxide (r(s) = -0.64, P = 0.008). Significant differences were identified between men (n = 8) and women (n = 8) in the concentrations of carbon monoxide (4 parts per million in men vs. 3 parts per million in women; P = 0.01) and volatile sulfur-containing compounds (134 parts per billion in men vs. 95 parts per billion in women; P = 0.016). There was a peak in ethanol concentration directly after food consumption and a significant decrease in ethanol concentration 2 h later (P = 0.01; n = 16). Sulfur-containing molecules increased linearly throughout the study period (beta = 7.4, P < 0.003). Ventilation patterns strongly influence quantification of volatile analytes in exhaled breath and thus, accordingly, the breathing pattern should be controlled to ensure representative analyses.  相似文献   

17.
Breath analysis, including measurement of nitric oxide (NO), is a noninvasive diagnostic tool that may help evaluate cetacean health. This is the first report on the effects of breath hold duration, feeding, and lung disease on NO in dolphin exhaled breath. Three healthy dolphins were trained to hold their breath for 30, 60, 90, and 120 s and then exhale into an underwater funnel. Exhaled NO values from 157 breath samples were compared among three healthy dolphins by breath hold time and after fasting and feeding. Exhaled NO values were also measured in two dolphins with pulmonary disease. NO in dolphin breath was higher compared to ambient air; healthy dolphins had higher NO concentrations in their breath after feeding compared to after overnight fasting; and there were no significant differences in exhaled NO levels by breath hold duration. A dolphin with Mycoplasma‐associated pneumonia and chronic gastrointestinal disease had higher postprandial exhaled NO levels compared to healthy controls. This study demonstrates, contrary to previous publications, that dolphins exhale NO. Given the high standard deviations present in exhaled breath NO values, future studies are needed to further standardize collection methods or identify more reliable samples (e.g., blood).  相似文献   

18.
At present drugs of abuse testing using exhaled breath as specimen is only possible for alcohol. However, we recently discovered that using modern liquid chromatography–mass spectrometry technique amphetamine and methamphetamine is detectable in exhaled breath following intake in drug addicts. We therefore undertook to develop a method for determination of methadone in exhaled breath from patients undergoing methadone maintenance treatment. Exhaled breath was collected from 13 patients after intake of the daily methadone dose. The compounds were trapped by filtering the air through a C18 modified silica surface. After elution of any trapped methadone the extract was analysed by a combined liquid chromatography–tandem mass spectrometry method. Recovery of trapped methadone from the filter surface was 96%, no significant matrix effect was observed, and the quantification using methadone-d3 as an internal standard was accurate (<10% bias) and precise (coefficient of variation 1.6–2.0%). Methadone was indisputably identified by means of the mass spectrometry technique in exhaled breath samples from all 13 patients. Identification was based on monitoring two product ions in selected reaction monitoring mode with correct relative ratio (±20%) and correct retention time. Excretion rates ranged from 0.39 to 78 ng/min. No methadone was detected in 10 control subjects. This finding confirms that breath testing is a new possibility for drugs of abuse testing. Collection of exhaled breath specimen is likely to be more convenient and safe as compared to other matrices presently in use.  相似文献   

19.
J R Prohaska 《Life sciences》1980,26(9):731-735
This research measured lipid peroxidation products in rats of varying age by a new method. Wistar male rats, 4, 12, 22 and 32 months old, were examined for lipid peroxidation in vivo by measurement of ethane, ethylene, butane and pentane in breath gases of intact animals. In the older rats, the amounts of the four hydrocarbons exhaled were greater than those in younger rats. All hydrocarbons tested were related to age by an exponential relationship, and quantitatively, ethane and ethylene were related to age with a linear regression fit correlation coefficient, 0.466–0.622 (p<0.01-0.001). When hydrocarbon gas production of 32 month-old rats was compared with that of 4 month-old rats, the greatest ratio was that for pentane (1.99). The following order was ethylene >ethane>butane. There were significant differences in the production of all hydrocarbons between 32 month-old rats and 4 month-old rats.Thiobarbituric acid reactants in serum exhibited an increasing tendency with age, but the values of 32 month-old rats were lower than those of 22 month-old rats. However, the differences between the age groups were not significant.These results showed that the measurement of hydrocarbons in the rats'breath was a sensitive index of in vivo peroxidation during aging.  相似文献   

20.
The goals of this study were to (1) determine the utility of quantification of ethane as a marker of ischemia-reperfusion during human cardiopulmonary bypass (CPB); and (2) determine, using an animal model for this surgical procedure, whether the mode of surgical approach produced increases the quantity of exhaled ethane. Human CPB was initiated following standard anesthetic and monitoring regimens. Samples of gas were collected at baseline and at multiple defined time points throughout the studies. Ethane was determined using cryogenic concentration and gas chromatography. Sternotomy increased exhaled ethane compared to baseline (p < .007; 5.8 ± 1.7 vs. 3.0 ± 0.7 nmol/m2 · min); ethane returned to baseline levels prior to the initiation of CPB. Aortic unclamping produced ethane elevation (p < .05; 2.3 ± 0.8 vs. 1.5 ± 0.4 nmol/m2 · min) with the levels being related to a lower cardiac index and a higher systemic vascular resistance post aortic unclamping. Termination of CPB significantly increased ethane levels compared to baseline (p < .002; 4.8 ± 1.7 vs. 3.0 ± 0.7 nmol/m2 · min). Independent variables that correlated with increased ethane measurements included a higher arterial blood pH on bypass and the change in hemoglobin pre- and post-CPB. Electrocautery, but not scalpel, incision of the porcine abdominal wall increased ethane levels significantly (p < .02). These results indicate that exhaled ethane may be a valuable marker of lipid peroxidation during and following CPB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号