首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultraviolet resonance Raman spectra of cytochrome c conformational states   总被引:2,自引:0,他引:2  
R A Copeland  T G Spiro 《Biochemistry》1985,24(18):4960-4968
Ultraviolet resonance Raman (UV RR) spectra are reported for ferricytochrome c from tuna and horse heart at pH 1.6, 7, 10, and 13, representing distinct conformational states of the protein (states II, III, IV, and V, respectively). The spectra were obtained with pulsed laser excitation at 200 and 218 nm, via H2 Raman shifting the fourth harmonic output of a pulsed YAG laser. At these deep UV wavelengths, strong enhancement is observed for vibrational modes associated with tryptophan, tyrosine, and phenylalanine side chains and with the amide groups of the polypeptide backbone. The amide I peak frequency is consistent with a dominant contribution from alpha-helical regions, although a broad high-frequency tail reflects a variety of unordered conformations. The peak frequency is 12 cm-1 higher for cytochrome c from tuna than from horse, suggesting a less tightly wound structure, which is consistent with the lower denaturation temperature previously reported for the tuna protein. The amide I peak broadens when native protein (state III) is converted to the low- or high-pH forms (states II and IV), reflecting some disordering of the polypeptide chain, but the peak frequencies are unshifted, establishing that the alpha-helical segments are not completely unfolded in these states. Raising the pH to 13 (state V), however, does produce a frequency upshift, reflecting helix unfolding. The amide II and III frequencies are likewise consistent with a dominant alpha-helix contribution in the native proteins; they gain intensity, and amide III is shifted to a lower frequency, in states II and IV, consistent with partial disordering.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. The "oxygenated" form of cytochrome has been generated by treatment of the enzyme with ascorbic acid. 2. "Oxygenated oxidase" so generated is stable over long periods (24 h). 3. Sedimentation velocity experiments have shown the "oxygenated" oxidase to be a less compact molecule than the oxidized.  相似文献   

3.
4.
Williamson MP 《Proteins》2003,53(3):731-739
A curved temperature dependence of an amide proton NMR chemical shift indicates that it explores discrete alternative conformations at least 1% of the time; that is, it accesses conformations that lie within 5 kcal/mol(-1) of the ground state. The simulations presented show how curvature varies with the nature of the alternative state, and are compared to experimental results. From studies in different denaturant concentrations, it is concluded that at least 25% of residues in reduced horse cytochrome c, covering most of the protein, with the exception of the center of the N- and C-terminal helices, visit alternative states under equilibrium conditions. The conformational ensemble of the protein therefore has high structural entropy. The density of alternative states is particularly high near the heme ligand Met80, which is of interest because both redox change and the first identified stage in unfolding are associated with change in Met80 ligation. By combining theoretical and experimental approaches, it is concluded that the alternative states each comprise approximately five residues, have in general less structure than the native state, and are accessed independently. They are therefore locally unfolded structures. The locations of the alternative states match what is known of the global unfolding pathway of cytochrome c, suggesting that they may determine the pathway.  相似文献   

5.
Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain of aerobic organisms. It catalyses the reduction of atmospheric oxygen to water, and couples this reaction to proton pumping across the membrane; this process generates the electrochemical gradient that subsequently drives the synthesis of ATP. The molecular details of the mechanism by which electron transfer is coupled to proton pumping in CcO is poorly understood. Recent calculations from our group indicate that His291, a ligand of the Cu(B) center of the enzyme, may play the role of the pumping element. In this paper we describe calculations in which a DFT/continuum electrostatic method is used to explore the coupling of the conformational changes of Glu242 residue, the main proton donor of both chemical and pump protons, to its pKa, and the pKa of His291, a putative proton loading site of our pumping model. The computations are done for several redox states of metal centers, different protonation states of Glu242 and His291, and two well-defined conformations of the Glu242 side chain. Thus, in addition to equilibrium redox/protonation states of the catalytic cycle, we also examine the transient and intermediate states. Different dielectric models are employed to investigate the robustness of the results, and their viability in the light of the proposed proton pumping mechanism of CcO. The main results are in agreement with the experimental measurements and support the proposed pumping mechanism. Additionally, the present calculations indicate a possibility of gating through conformational changes of Glu242; namely, in the pumping step, we find that Glu242 needs to be reprotonated before His291 can eject a proton to the P-site of membrane. As a result, the reprotonation of Glu can control proton release from the proton loading site.  相似文献   

6.
7.
8.
9.
Stabilized intermediate redox states of cytochrome c are generated by radiolytic reduction of initially oxidized enzyme in glass matrices at liquid nitrogen temperature. In the intermediate states the heme group is reduced by hydrated electrons, whereas the protein conformation is restrained close to its oxidized form by the low-temperature glass matrix. The intermediate and stable redox states of cytochrome c at neutral and alkaline pH are studied by low-temperature resonance Raman spectroscopy using excitations in resonance with the B (Soret) and Q1 (beta) optical transitions. The assignments of the cytochrome c resonance Raman bands are discussed. The observed spectral characteristics of the intermediate states as well as of the alkaline transition in the oxidized state are interpreted in terms of oxidation-state marker modes, spin-state marker modes, heme iron--axial ligand stretching modes, totally symmetric in-plane porphyrin modes, nontotally symmetric in-plane modes, and out-of-plane modes.  相似文献   

10.
The resonance Raman (RR) spectra of oxidized, reduced, and oxidized cyanide-bound cytochrome c oxidase with excitation at several wavelengths in the 600-nm region are presented. No evidence is found for laser-induced photoreduction of the oxidized protein with irradiation at lambda approximately 600 nm at 195 K, in contrast to the predominance of this process upon irradiation in the Soret region at this temperature. The Raman spectra of all three protein species are very similar, and there are no Raman bands which are readily assignable to either cytochrome a or cytochrome a3 exclusively. The Raman spectra of the three protein species do, however, exhibit a number of bands not observed in the RR spectra of other hemoproteins upon exicitation in their visible absorption bands. In particular, strong Raman bands are observed in the low-frequency region of the RR spectra (less than 500 cm-1). The frequencies of these bands are similar to those of the copper-ligand vibrations observed in the RR spectra of type 1 copper proteins upon excitation in the 600-nm absorption band characteristic of these proteins. In cytochrome c oxidase, these bands do not disappear upon reduction of the protein and, therefore, cannot be attributed to copper-ligand vibrations. Thus, all the observed RR bands are associated with the two heme A moieties in the enzyme.  相似文献   

11.
Absorption spectra of highly purified liver microsomal cytochrome P-450 in non-equilibrium states were obtained at 77 K by reduction with trapped electrons, formed by gamma-irradiation of the water-glycerol matrix. In contrast to the equilibrium form of ferrous cytochrome P-450 with the heme iron in the high-spin state the non-equilibrium ferrous state has a low-spin heme iron. The absorption spectrum of the non-equilibrium ferrous cytochrome P-450 is characterized by two bands at 564 (-band) and 530 nm (-band). When the temperature is increased to about 278 K this non-equilibrium form of the reduced enzyme is relaxed to the corresponding equilibrium form with a single absorption band at 548 nm in the visible region characteristic for a high-spin heme iron.  相似文献   

12.
Oxidation state-dependent conformational changes in cytochrome c.   总被引:2,自引:0,他引:2  
High-resolution three-dimensional structural analyses of yeast iso-1-cytochrome c have now been completed in both oxidation states using isomorphous crystalline material and similar structure determination methodologies. This approach has allowed a comprehensive comparison to be made between these structures and the elucidation of the subtle conformational changes occurring between oxidation states. The structure solution of reduced yeast iso-1-cytochrome c has been published and the determination of the oxidized protein and a comparison of these structures are reported herein. Our data show that oxidation state-dependent changes are expressed for the most part in terms of adjustments to heme structure, movement of internally bound water molecules and segmental thermal parameter changes along the polypeptide chain, rather than as explicit polypeptide chain positional shifts, which are found to be minimal. This result is emphasized by the retention of all main-chain to main-chain hydrogen bond interactions in both oxidation states. Observed thermal factor changes primarily affect four segments of polypeptide chain. Residues 37-39 show less mobility in the oxidized state, with Arg38 and its side-chain being most affected. In contrast, residues 47-59, 65-72 and 81-85 have significantly higher thermal factors, with maximal increases being observed for Asn52, Tyr67 and Phe82. The side-chains of two of these residues are hydrogen bonded to the internally bound water molecule, Wat166, which shows a large 1.7 A displacement towards the positively charged heme iron atom in the oxidized protein. Further analyses suggest that Wat166 is a major factor in stabilizing both oxidation states of the heme through differential orientation of dipole moment, shift in distance to the heme iron atom and alterations in the surrounding hydrogen bonding network. It also seems likely that Wat166 movement leads to the disruption of the hydrogen bond from the side-chain of Tyr67 to the Met80 heme ligand, thereby further stabilizing the positively charged heme iron atom in oxidized cytochrome c. In total, there appear to be three regions about which oxidation state-dependent structural changes are focussed. These include the pyrrole ring A propionate group, Wat166 and the Met80 heme ligand. All three of these foci are linked together by a network of intermediary interactions and are localized to the Met80 ligand side of the heme group. Associated with each is a corresponding nearby segment of polypeptide chain having a substantially higher mobility in the oxidized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
Vibrational frequencies associated with FeC and CO stretching and FeCO bending modes have been determined via resonance Raman (RR) and infrared (IR) spectroscopy for cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn; Trp-191---Phe) and distal (Trp-51----Phe; Arg-48----Leu and Lys) side of the heme. The data were analyzed with the aid of a recently established correlation between nu FeC and nu CO, which can be used to distinguish between back-bonding and axial ligand donor effects. At high pH all adducts showed essentially the same vibrational pattern (form I') with nu FeC approximately 505 cm-1, nu CO approximately 1948 cm-1, and delta FeCO (weak RR band) approximately 576 cm-1. These frequencies are very similar to those shown by the myoglobin CO adduct and imply a "normal" H-bond of the proximal histidine. At pH 7 (pH 6 for Asn-235 and Leu-48), different forms are seen for different proteins: form I (nu FeC approximately 500 cm-1, nu CO = 1922-1941 cm-1, and delta FeCO approximately 580 cm-1, very weak) in the case of CCP(MI) and Phe-191, as well as bakers' yeast CCP, or form II (nu FeC approximately 530 cm-1, nu CO = 1922-1933 cm-1, and delta FeCO = 585 cm-1, moderately strong) for Asn-235 and Phe-51.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Zinc cytochrome c forms tight 1:1 complexes with a variety of derivatives of cytochrome c oxidase. On complex-formation the fluorescence of zinc cytochrome c is diminished. Titrations of zinc cytochrome c with cytochrome c oxidase, followed through the fluorescence emission of the former, have yielded both binding constants (K approximately 7 x 10(6) M-1 for the fully oxidized and 2 x 10(7) M-1 for the fully reduced enzyme) and distance information. Comparison of steady-state measurements obtained by absorbance and fluorescence spectroscopy in the presence and in the absence of cyanide show that it is the reduction of cytochrome a and/or CuA that triggers a conformational change: this increases the zinc cytochrome c to acceptor (most probably cytochrome a itself) distance by some 0.5 nm. Ligand binding to the fully oxidized or fully reduced enzyme leaves the extent of fluorescence quenching unchanged, whereas binding of cyanide to the half-reduced enzyme (a2+CuA+CuB2+-CN(-)-a3(3+)) enhances fluorescence emission relative to that for the fully reduced enzyme, implying further relative movement of donor and acceptor.  相似文献   

16.
The high-frequency resonance Raman spectra of FeIII yeast native cytochrome c peroxidase (CCP) and five of its mutants [CCP(MI), Phe-51, Leu-48, Lys-48, Asn-235, and Phe-191] were recorded in phosphate buffer, pH 7.0, and in glycerol/phosphate mixtures at 295 and 10 K. Glycerol induces heme coordination changes in some of the CCP mutants at room temperature. It apparently weakens the binding of the Fe atom to ligands in the distal heme cavity and drives the heme toward the 5-coordinate, high-spin state. At 10 K, native CCP and all the mutants (except Phe-51 which remains 6-coordinate, high-spin) show various distributions of spin and coordination states which differ from those observed at 295 K. Upon cooling in phosphate buffer, pH 7, and to a much lesser extent in 66% glycerol/phosphate, an internal strong-field ligand is coordinated to the Fe. A likely candidate is H2O-595, which could become a strong-field ligand on H-bonding and/or proton transfer to H2O-648, and/or the distal His-52. However, distal His-52 itself cannot be ruled out as the coordinating ligand considering that the Phe-51 mutant, which binds H2O-595 at room temperature, does not show a large 6-coordinate, low-spin component at 10 K like the other mutants. These results clearly indicate that the Fe coordination in CCP and its mutants is sensitive to both temperature and solvent composition.  相似文献   

17.
18.
THE Soret spectrum of "resting" cytochrome oxidase in cytochrome-c depleted mitochondria has been determined. The spectrum obtained is dependent on the rate at which the oxidase is turning over. In the least active preparations, the spectrum is almost pure "oxidized" oxidase. With increasing activity the spectrum is converted to a mixture of "oxidized" and "oxygenated" oxidases. It is concluded that the same conformational differences between the two non-reduced forms that are found in the purified enzyme also occur in these cytochrome-c depleted mitochondria.  相似文献   

19.
WEFT-NOESY and transfer WEFT-NOESY NMR spectra were used to determine the heme proton assignments for Rhodobacter capsulatus ferricytochrome c2. The Fermi contact and pseudo-contact contributions to the paramagnetic effect of the unpaired electron in the oxidized state were evaluated for the heme and ligand protons. The chemical shift assignments for the 1H and 15N NMR spectra were obtained by a combination of 1H-1H and 1H-15N two-dimensional NMR spectroscopy. The short-range nuclear Overhauser effect (NOE) data are consistent with the view that the secondary structure for the oxidized state of this protein closely approximates that of the reduced form, but with redox-related conformational changes between the two redox states. To understand the decrease in stability of the oxidized state of this cytochrome c2 compared to the reduced form, the structural difference between the two redox states were analyzed by the differences in the NOE intensities, pseudo-contact shifts and the hydrogen-deuterium exchange rates of the amide protons. We find that the major difference between redox states, although subtle, involve heme protein interactions, orientation of the heme ligands, differences in hydrogen bond networks and, possible alterations in the position of some internal water molecules. Thus, it appears that the general destabilization of cytochrome c2, which occurs on oxidation, is consistent with the alteration of hydrogen bonds that result in changes in the internal dynamics of the protein.  相似文献   

20.
Resonance energy transfer studies using a pyrene-labeled phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphoglycerol (donor) and the heme (acceptor) of cytochrome c (cyt c) have indicated that ATP causes changes in the conformation of the lipid-bound protein (Ryt?maa, M., Mustonen, P., and Kinnunen, P. K. J. (1992) J. Biol. Chem. 267, 22243-22248). Accordingly, after binding cyt c via its so called C-site to neat phosphatidylglycerol liposomes (mole fraction of PG = 1.0) has commenced, further quenching of donor fluorescence is caused by ATP, saturating at 2 mm nucleotide. ATP-induced conformational changes in liposome-associated cyt c could be directly demonstrated by CD in the Soret band region (380-460 nm). The latter data were further supported by time-resolved spectroscopy using the fluorescent cyt c analog with a Zn(2+)-substituted heme moiety. A high affinity ATP-binding site has been demonstrated in cyt c (Craig, D. B., and Wallace, C. J. A. (1993) Protein Sci. 2, 966-976) that is compromised by replacing the invariant Arg(91) to norleucine. Although no major effects on conformation and function of cyt c were concluded due to the modification, a significantly reduced effect by ATP on the lipid-bound [Nle(91)]cyt c was evident, implying that this modulation is mediated via the Arg(91)-containing binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号