首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary By in situ hybridization, Y-specific DNA sequences were localized on Xp22.3-Xpter of one of the two X chromosomes in all of eleven XX males studied. In nine of the cases the presence of the Y-specific DNA did not affect random X inactivation in fibroblasts. Fibroblasts of the other two cases showed a preferential inactivation of the Y DNA-carrying X chromosome. In only one of these two exceptions blood lymphocytes could also be studied, and here, random inactivation of the Y DNA-carrying X chromosome occurred. Furthermore, the gene dosage of steroid sulfatase (STS) was examined by Southern blot analysis. In ten of the cases including the one showing random X-inactivation in lymphocytes but not in fibroblasts, a double dosage of the STS gene is present. The remaining case with non-random inactivation shows a single STS gene dosage. This case was reported previously to have STS enzyme activity in the male range. It is assumed that, as a consequence of an unequal X-Y interchange, a deletion of X-specific DNA sequences may result in the preferential inactivation of the Y DNA-carrying X chromosome.  相似文献   

2.
Summary G- and R-banded chromosome preparations from eight of twelve 46,XX males, with no evidence of mosaicism or a free Y chromosome, were distinguished in blind trials from preparations from normal 46,XX females by virtue of heteromorphism of the short arm of one X chromosome. Photographic measurements on X chromosomes and on chromosome pair 7 in cells from twelve 46,XX males, eight 46,XX females, and four 46,XY males revealed a significant increase in the size of the p arm of one X chromosome in the group of XX males, independently characterised as being heteromorphic for Xp. No such differences were observed between X chromosomes of normal males and females or between homologues of chromosome pair 7 in all groups. The heteromorphism in XX males is a consequence of an alteration in shape (banding profile) and length of the tip of the short arm of one X chromosome, and the difference in size of the two Xp arms in these 46,XXp+ males ranged from 0.4% to 22.9%. From various considerations, including the demonstration of a Y-specific DNA fragment in DNA digests from nuclei of one of three XX males tested, it is concluded that the Xp+ chromosome is a product of Xp-Yp exchange. These exchanges are assumed to originate at meiosis in the male parent and may involve an exchange of different amounts of material. The consequences of such unequal exchange are considered in terms of the inheritance of genes located on Yp and distal Xp. No obvious phenotypic difference was associated with the presence or absence of Xp+. Thus, some males diagnosed as 46,XX are mosaic for a cryptic Y-containing cell line, and there is now excellent evidence that maleness in others may be a consequence of an autosomal recessive gene. The present data imply that in around 70% of 46,XX males, maleness is a consequence of the inheritance of a paternal X-Y interchange product.  相似文献   

3.
A repeated DNA element (STIR) interspersed in Xp22.3 and on the Y chromosome has been used as a tag to isolate seven single-copy probes from the human sex chromosomes. The seven probes detect X-specific loci located in Xp22.3. Using a panel of X-chromosomal deletions from X-Y interchange sex reversals (XX males and XY females), these X-specific loci and some additional ones were mapped to four contiguous intervals of Xp22.3, proximal to the pseudoautosomal region and distal to STS. The construction of this deletion map of the terminal part of the human X chromosome can serve as a starting point for a long-range physical map of Xp22.3 and for a more accurate mapping of genetic diseases located in Xp22.3.  相似文献   

4.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

5.
To determine if human XX maleness results from an abnormal chromosomal X-Y interchange, we studied the inheritance of the paternal pseudoautosomal region in nine patients. Those six patients in whom Y-specific DNA was found (Y(+)) inherited the entire pseudoautosomal region from the paternal Y chromosome and lost that of the paternal X chromosome. Moreover, in three Y(+) cases, we observed the deletion of a paternal Xp locus tightly linked to the pseudoautosomal region. These results definitively show that an abnormal and terminal X-Y interchange during paternal meiosis causes Y(+)XX maleness. In contrast, no abnormal X-Y interchange was observed in any of the three Y(-) cases analyzed, suggesting that maleness can occur in the absence of any Y-specific DNA.  相似文献   

6.
Summary Two cases of 47,XXX males were studied, one of which has been published previously (Bigozzi et al. 1980). Analysis of X-linked restriction fragment length polymorphisms revealed that in this case, one X chromosome was of paternal and two were of maternal origin, whereas in the other case, two X chromosomes were of paternal and one of maternal origin. Southern blot analysis with Y-specific DNA probes demonstrated the presence of Y short arm sequences in both XXX males. In one case, the results obtained pointed to a paracentric inversion on Yp of the patient's father. In situ hybridization indicated that the Y-specific DNA sequences were localized on Xp22.3 in one of the three X chromosomes in both cases. The presence of Y DNA had no effect on random X inactivation. It is concluded that both XXX males originate from aberrant X-Y interchange during paternal meiosis, with coincident nondisjunction of the X chromosome during maternal meiosis in case 1, and during paternal meiosis II in case 2.  相似文献   

7.
We have used bivariate flow karyotype analysis to quantify aberrant X chromosome size in 11 XX males. With one exception, the patients could be grouped into those with an X homologue difference greater than normal (Group A, n = 3) and into those whose X homologue difference could not be distinguished from female controls (Group B, n = 7). The range of sizes of the aberrant X chromosome in Y-sequence positive patients agrees with the variable nature of the X-Y interchange in these individuals as determined by the use of Y-specific DNA probes and Southern blotting analysis. In one patient it was possible to sort separately the normal and the X-Y interchanged homologues for dot blot analysis. The presence of Y sequences and an increased dose of the zinc finger gene, ZFY, were detected in the X-Y interchanged homologue. In preliminary studies of 5 male and 6 female controls, it was noted that a consistent difference between the two X homologues in females was found which could not be totally explained by errors of the fitting procedure. We suggest that this difference could be due to X inactivation and that the two X homologues in females might be distinguishable.  相似文献   

8.
The origin of 45,X males.   总被引:6,自引:2,他引:4       下载免费PDF全文
Maleness in association with the karyotype 45,X is a very rare and hitherto unexplained condition previously described in only four or five patients. This study was carried out to determine whether such males might actually possess Y-chromosomal material. Of the two 45,X males studied, one was found to be a low-grade mosaic with a 46,XY karyotype in less than 3% of fibroblasts; all lymphocytes karyotyped were 45,X. Fibroblast DNA from this individual was found to contain Y-specific repeated sequences in 1%-3% the amount observed in the father, consistent with mosaicism for a 46,XY cell line. No Y-specific repeated sequences were detected in the other patient, in whom all mitoses were 45,X. In neither patient were there detectable amounts of any of the single-copy Y-specific DNA sequences for which we tested. Studies of Xg blood groups and of X-linked restriction fragment length polymorphisms indicated that the single X chromosome was of maternal origin in both 45,X male probands. In contrast to the situation in XX males, we can exclude paternal X-Y interchange as the etiology in the cases described here. Our findings are compatible with mosaicism being the explanation of at least some "45,X" males.  相似文献   

9.
The etiology of maleness in XX men   总被引:19,自引:0,他引:19  
Summary Information relating to the etiology of human XX males is reviewed. The lesser body height and smaller tooth size in comparison with control males and first-degree male relatives could imply that the patients never had any Y chromosome. Neither reports of occasional mitoses with a Y chromosome, nor of the occurrence of Y chromatin in Sertoli cells are convincing enough to support the idea that low-grade or circumscribed mosaicism is a common etiologic factor. Reports of an increase in length of one of the X chromosomes in XX males are few and some are conflicting. Nor is there any evidence to support the idea of loss of material. However, absence of visible cytogenetic alteration does not rule out the possibility of translocations, exchanges or deletions.A few familial cases are known. Mendelian gene mutations may account for a number of instances of XX males, similar genes being well known in several animal species. The existing geographical differences in the prevalence of human XX males could be explained by differences in gene frequency. But if gene mutation were a common cause of XX maleness there would be more familial cases.Any hypothesis explaining the etiology of XX males should take into account the following facts. There are at least 4 examples of XX males who have inherited the Xg allele carried by their fathers, and at least 9 of such males who have not. The frequency of the Xg phenotype among XX males is far closer to that of males than to that of females, while the absence of any color-blind XX males (among 40 tested) resembles the distribution in females. Furthermore, H-Y antigen is present in XX males, often at a strength intermediate between that in normal males and females. Finally, in a pedigree comprising three independently ascertained XX males, the mothers of all three are H-Y antigen-positive, and the pattern of inheritance of the antigen in two of them precludes X-chromosomal transmission.Many of the data are consistent with the hypothesis that XX males arise through interchange of the testic-determining gene on the Y chromosome and a portion of the X chromosome containing the Xg gene. However, actual evidence in favor of this hypothesis is still lacking, and the H-Y antigen data are not easy to explain. In contrast, if recent hypotheses on the mechanisms controlling the expression of H-Y antigen are confirmed, a gene exerting negative control on testis determination would be located near the end of of the short arm of the X chromosome. This putative gene is believed not to be inactivated in normal females, for at least two other genes located in the same region, i.e. Xg and steroid sulfatase, are not. Deletion or inactivation of these loci would explain how XX males arise and would be consistent with most, but not all, the facts.There is yet no single hypothesis that by itself can explain all the facts accumulated about XX males. While mosaicism appears very unlikely in most cases, Mendelian gene mutation, translocation, X-Y interchange, a minute deletion or preferential inactivation of an X chromosome, or part thereof, remain possible. The etiology of XX maleness may well be heterogeneous.  相似文献   

10.
11.
A deletion map of the human Y chromosome based on DNA hybridization.   总被引:65,自引:11,他引:54       下载免费PDF全文
The genomes of 27 individuals (19 XX males, two XX hermaphrodites, and six persons with microscopically detectable anomalies of the Y chromosome) were analyzed by hybridization for the presence or absence of 23 Y-specific DNA restriction fragments. Y-specific DNA was detected in 12 of the XX males and in all six individuals with microscopic anomalies. The results are consistent with each of these individuals carrying a single contiguous portion of the Y chromosome; that is, the results suggest a deletion map of the Y chromosome, in which each of the 23 Y-specific restriction fragments tested can be assigned to one of seven intervals. We have established the polarity of this map with respect to the long and short arms of the Y chromosome. On the short arm, there is a large cluster of sequences homologous to the X chromosome. The testis determinant(s) map to one of the intervals on the short arm.  相似文献   

12.
A 2-year-old boy was found to have a 47,XXX karyotype. Restriction-fragment-length-polymorphism analysis showed that, of his three X chromosomes, one is of paternal and two are of maternal origin. The results of Y-DNA hybridization were reminiscent of those in XX males in two respects. First, hybridization to Southern transfers revealed the presence in this XXX male of sequences derived from the Y-chromosomal short arm. Second, in situ hybridization showed that this Y DNA was located on the tip of the X-chromosomal short arm. We conclude that this XXX male resulted from the coincidence of X-X nondisjunction during maternal meiosis and aberrant X-Y interchange either during or prior to paternal meiosis.  相似文献   

13.
Summary We report cytogenetic and DNA studies in three XX males. Two males seemed to have extra chromosomal material on the tip of one X chromosome. All three males were shown to have Y chromosome material as indicated by hybridization of Y-specific DNA probes to genomic DNA. One male was unusual in that as he showed the 15-kb fragment detected by pDP34 that is thought to map close to the Y centromere. It is suggested that this finding might point to an inversion on the Y chromosome.  相似文献   

14.
X and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The upregulation of the proto-Y allele may be favored in males because of this gene’s function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.  相似文献   

15.
R Frankham 《Génome》1990,33(3):340-347
For X-Y exchange to be of importance in the coevolution of X and Y rDNA, there must be a mechanism to maintain cytologically normal X chromosomes in the face of continual infusions of X.YL chromosomes produced by X-Y exchanges. Replicated populations were founded with different frequencies of isogenic X and X.YL chromosomes. The X.YL chromosome declined in frequency over time in all lines. Relative fitnesses, estimated from chromosome frequency trajectories, were 0.40, 1.01, and 1.0 for X.YL/X.YL, X.YL/X, and X/X females and 0.75 and 1.0 for X.YL/Y and X/Y males, respectively. The equilibrium frequency for the X.YL chromosome due to the balance between X-Y exchange and selection was predicted to be 4-16 x 10(-4). The results strengthen the evidence for the involvement of X-Y exchange in the coevolution of X and Y rDNA arrays. Conditions for the evolution of reproductive isolation by sex-chromosome translocation are much less probable than previously supposed since the X.YL translocation chromosome is at a selective disadvantage to cytologically normal X chromosomes. Additional heterochromatin was not neutral but was only deleterious beyond a threshold, as one dose of the heterochromatic XL arm did not reduce female reproductive fitness, but two doses did.  相似文献   

16.
A number of patients with paradoxical sex chromosome complements (so-called XY females, XX and XO males) have been investigated with a series of 19 Yp and 4 Yq DNA probes to establish which region of the Y is essential for male sexual differentiation. Of the 23 XX males, 18 possessed one or more Yp probe sequences with only 5 lacking such sequences. Of 9 XY females examined, only one showed evidence of a deletion in Yp occurring either as a result of X-Y interchange or interstitial deletion. This suggests that the majority of XY females are not commonly deleted for those Y sequences which are found to be transferred to the X in XX males. The DNA of two XO males both contained different portions of the Y. From a comparison of the patterns of Yp sequences in these patients, it has been possible to elaborate a model of Yp in terms of the order of probe sequences and to suggest a location for the testis determining region in distal Yp.  相似文献   

17.
Illegitimate pairing of the X and Y chromosomes in Sxr mice   总被引:3,自引:0,他引:3  
X/Y male mice carrying the sex reversal factor, Sxr, on their Y chromosomes typically produce 4 classes of progeny (recombinant X/X Sxr male male and X/Y non-Sxr male male, and non-recombinant X/X female female and X/Y Sxr male male) in equal frequencies, these deriving from obligatory crossing over between the chromatids of the X and Y during meiosis. Here we show that X/Y males that, exceptionally, carry Sxr on their X chromosome, rather than their Y, produce fewer recombinants than expected. Cytological studies confirmed that X-Y univalence is frequent (58%) at diakinesis as in X/Y Sxr males, but among those cells with X-Y bivalents only 38% showed normal X-Y pseudo-autosomal pairing. The majority of such cells (62%) instead showed an illegitimate pairing between the short arms of the Y and the Sxr region located at the distal end of the X, and this can be understood in terms of the known homology between the testis-determining region of the Y short arm and that of the Sxr region. This pairing was sufficiently tenacious to suggest that crossing over took place between the 2 regions, and misalignment and unequal exchange were suggested by indications of bivalent asymmetry. Metaphase II cells deriving from meiosis I divisions in which the normal X-Y exchange had not occurred were also found. The cytological data are therefore consistent with the breeding results and suggest that normal pseudo-autosomal pairing and crossing over is not a prerequisite for functional germ cell formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Bobbed lethal (bbl) chromosomes carry too few ribosomal genes for homozygous flies to be viable. Reversion of bbl chromosomes to bb or nearly bb+ occurs under magnifying conditions at a low frequency in a single generation. These reversions occur too rapidly to be accounted for by single unequal sister chromatid exchanges and seem unlikely to be due to multiple sister strand exchanges within a given cell lineage. Analysis of several one-step revertants indicates that they are X-Y recombinant chromosomes which probably arise from X-Y recombination at bb. The addition of ribosomal genes from the Y chromosome to the bbl chromosome explains the more rapid reversion of the bbl chromosome than is permitted by single events of unequal sister chromatid exchange. Analysis of stepwise bbl magnified chromosomes, which were selected over a period of 4-9 magnifying generations, shows ribosomal gene patterns that are closely similar to each other. Similarity in rDNA pattern among stepwise magnified products of the same parental chromosome is consistent with reversion by a mechanism of unequal sister strand exchange.  相似文献   

19.
B D McKee  G H Karpen 《Cell》1990,61(1):61-72
In Drosophila melanogaster males, the sex chromosomes pair during meiosis in the centric X heterochromatin and at the base of the short arm of the Y (YS), in the vicinity of the nucleolus organizers. X chromosomes deficient for the pairing region segregate randomly from the Y. In this report we show that a single ribosomal RNA (rRNA) gene stimulates X-Y pairing and disjunction when inserted onto a heterochromatically deficient X chromosome by P element-mediated transformation. We also show that insert-containing X chromosomes pair at the site of insertion, that autosomal rDNA inserts do not affect X-Y pairing or disjunction, and that the strength of an X pairing site is proportional to the dose of ectopic rRNA genes. These results demonstrate that rRNA genes can promote X-Y pairing and disjunction and imply that the nucleolus organizers function as X-Y pairing sites in wild-type Drosophila males.  相似文献   

20.
Summary XX maleness is the most common condition in which testes develop in the absence of a cytogenetically detectable Y chromosome. Using molecular techniques, it is possible to detect Yp sequences in the majority of XX males. In this study, we could detect Y-specific sequences, including the sex-determining region of the Y chromosome (SRY), using fluorescence in situ hybridization. In 5 out of 6 previously unpublished XX males, SRY was translocated onto the terminal part of an X chromosome. This is the first report in which translocation of an SRY-bearing fragment to an X chromosome in XX males could be directly demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号