首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Arachidonic acid (AA) and its metabolites are intimately linked to carcinogenesis. Inhibitors of AA metabolic enzymes have demonstrated anti-carcinogenic effects in vivo and induce apoptosis of many cancer cell lines in vitro. The mechanism by which AA influences carcinogenesis, however, remains unresolved. The current study explores the growth inhibitory potential of Triacsin C, PLT-98625, and NS-398 which inhibit three distinct metabolic enzymes that control intracellular AA levels: fatty acid coenzyme-A ligase 4 (FACL-4), coenzyme-A independent transacylase (CoA-IT), and cyclooxygenase (COX), respectively. Results reveal the anti-proliferative effects of these inhibitors in a number of human cancer cell lines. Further studies in the SK-MES-1 cell line demonstrate that all three inhibitors induce accumulation of unesterified AA which correlates with induction of apoptosis. Addition of exogenous AA also induces apoptosis. Furthermore, in combination, these inhibitors act cooperatively to induce AA accumulation which correlates to a synergistic reduction in cell viability. Taken together, these results suggest that accumulation of unesterified AA is a common mechanism in the induction of cancer cell apoptosis by various inhibitors of AA metabolism, confirm that previously described AA remodeling pathways are valid in cancer cells, and indicate that combination treatment strategies utilizing these inhibitors may represent a novel approach to blocking cancer cell growth. Further study is required to determine the downstream pathway(s) whereby high cellular burdens of unesterified AA promote apoptosis.  相似文献   

2.
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.  相似文献   

3.
The purpose of this study was to determine whether expression of tissue transglutaminase (TG2) and caspase-3 proteins in drug-resistant breast carcinoma MCF-7/DOX cells would render these cells selectively susceptible to apoptotic stimuli. Despite high resistance to multidrug resistance (MDR)-related drug, doxorubicin (> or =150-fold), the MCF-7/DOX cells were extremely sensitive to apoptotic stimuli. Thus, calcium ionophore, A23187 (A23187) and the protein kinase C inhibitor staurosporine (STS) each induced rapid and time-dependent apoptosis in MCF-7/DOX cells. The apoptosis induced by either agent was accompanied by caspase-3 activation and other downstream changes that are typical of cells undergoing apoptosis. The alterations upstream of caspase-3 activation, however, such as loss in mitochondrial membrane potential (DeltaPsi), release of cytochrome c, and activation of caspase-8, and caspase-9, were detected only in STS-treated cells. The A12387 failed to induce any of the caspase-3 upstream changes, implying that A23187-induced apoptosis may utilize one or more novel upstream pathways leading to the activation of caspase 3. In summary, these data demonstrate that MCF-7/DOX cells are much more sensitive to apoptotic stimuli than previously thought and that A23187-induced apoptosis may involve some novel, yet unidentified, upstream pathway that leads to the activation of caspase-3 and other downstream events.  相似文献   

4.
Plasma sex hormone-binding globulin (SHBG or SBP), the specific carrier for estradiol and androgens, after binding to its membrane receptor (SHBG-R), causes a significant increase of cAMP in the presence of estradiol, in both breast (MCF-7) and prostate (LNCaP) cancer cells maintained in serum-free medium. On the other hand, it has been proposed that estrogens, in addition to the well-known nuclear receptor pathway, exert their biological effect inducing cAMP, as a consequence of a direct membrane action, in breast cancer and uterine cells. The aim of the present study was to clarify this controversial issue by verifying if the cAMP increase in MCF-7 cells was a direct effect of estradiol, or if it was mediated by FCS proteins, such as bovine sex hormone-binding globulin; and to reevaluate the effect of human SHBG on cAMP induction in the presence of FCS. MCF-7 cells were maintained in DCC-FCS (treated with DCC to remove steroids), in SHBG-FREE/DCC-FCS (treated with DCC and with a specific affinity chromatography to remove bovine sex hormone-binding globulin), or in serum-free medium (SFM). It was observed that estradiol determined a significant time-dependent increase of cAMP only in MCF-7 cells maintained in 10% DCC-FCS. When cells were maintained in 10% SHBG-FREE/DCC-FCS, estradiol had no detectable effect. However, its ability to increase cAMP was observed again after the addition of human SHBG, in doses ranging from 5 to 50 nM. Moreover, in the presence of 10% SHBG-FREE/DCC-FCS, SHBG, even in the absence of estradiol, caused a significant increase of cAMP. In conclusion, the data reported in the present study suggest that the ability of estradiol to induce cAMP in MCF-7 cells is not due to a direct membrane effect of the hormone, but rather it is mediated by FCS. SHBG is one of the serum factors mediating estradiol action. Lastly, it was proven that SHBG triggers the cAMP pathway in MCF-7 cells in a physiologic culture condition and at physiologic concentrations.  相似文献   

5.
Unprimed murine lymphocytes maintained in culture medium containing fetal calf serum (FCS) and 2-mercaptoethanol (2-ME) developed very high levels of anti-trinitrophenyl (TNP) plaque forming cells (PFC). Both FCS and 2-ME contributed to the response. The development of anti-TNP PFC during culture was accompanied by a 10-fold expansion in the number of immunoglobulin-secreting cells, indicating polyclonal stimulation. However, the number of anti-TNP PFC was disproportionately high and not accompanied by a similar increase in plaques specific for sheep red blood cells. The TNP-specific plaques were not artifacts of the plaque assay since they were 98% inhibited by specific antigen. The in vitro induction of anti-TNP PFC by FCS and 2-ME was common to a number of mouse strains, although some genetic variation occurred. Nylon-wool-separated B cells, nude mouse spleen cells, and bone marrow cells all produced high levels of anti-TNP after culture with medium containing FCS and 2-ME. The addition of T cells to B-cell cultures increased the numbers of anti-TNP PFC by 1.5- to 2.5-fold. The presence of a TNP-cross-reacting antigen in FCS probably contributed to the unexpectedly high anti-TNP response. The response to the antigen in FCS was potentiated by the enhancing activity of 2-ME.  相似文献   

6.
7.
8.
The objective of this study was to compare fetal calf serum, new-born calf serum and normal steer serum as medium supplements in the development of bovine morulae in vitro . Bovine morulae were cultured in Hams F-10 tissue culture medium (HF-10) supplemented with 5% or 10% (v/v) fetal calf serum (FCS), new-born calf serum (NBCS) or normal steer serum (NSS). Embryos were recovered at slaughter from mixed bred donor cows of mixed breeding following estrus synchronization with prostaglandin and superovulation with follicle stimulating hormone. A total of 88 morulae were recovered, washed in HF-10 + 1% Bovine Serum Albumin and randomly assigned to treatments. Embryos were cultured in microdrops of medium under paraffin oil at 37 degrees C in a 5% CO(2) humidified atmosphere. Observations for stage of development were made every 24 hours. In vitro development was analyzed by assigning to each embryo a value of 0-5 based on the most advanced stage reached (0= no development, 5= development to a hatched blastocyst). Analysis of variance of these data revealed a significant treatment effect (P<.001) while no level effect or treatment x level interaction was apparent. Comparison of treatment means by Duncans new mulitple range test showed that NSS was superior to NBCS (P<.05) which was in turn superior to FCS (P<.05) as supplements of HF-10 in promoting the in vitro development of bovine morulae.  相似文献   

9.
Mitochondria and associated oxidative stress have been shown to play critical roles in apoptotic death induced by various stress agents. Previously, we reported the antitumor property of diospyrin (D1), a plant-derived bisnaphthoquinonoid, and its diethylether derivative (D7), which was found to cause apoptotic death in human cancer cell lines. The present study aims to explore the relevant mechanism of apoptosis involving generation of cellular reactive oxygen species (ROS) by D7 in human breast carcinoma (MCF-7) cells. It was found that while D7 inhibited the proliferation of tumor cells, the associated apoptosis induced by D7 was prevented by treating the cells with N-acetyl-L: -cysteine (NAC), an antioxidant, and cyclosporine A (CsA), an inhibitor of mitochondrial permeability transition (MPT). Experiments using suitable inhibitors also demonstrated that D7 could alter the electron flow in mitochondrial electron transport chain by affecting target(s) between complex I and complex III, and indicated the probable site of D7-induced generation of ROS. These results were further supported by confocal microscopic observation on changes in mitochondrial organization and shape in cells treated with D7. Taken together, the results of our study clearly suggested that the apoptosis induced by D7 would involve alteration of MPT, cardiolipin peroxidation, migration of Bax from cytosol to mitochondria, decreased expression of Bcl-2, and release of cytochrome c, indicating oxidative mechanism at the mitochondrial level in the tumor cells.  相似文献   

10.
11.
Although carboplatin is one of the standard chemotherapeutic agents for non-small cell lung cancer (NSCLC), it has limited therapeutic efficacy due to activation of a survival signaling pathway and the induction of multidrug resistance. Curcumin, a natural compound isolated from the plant Curcuma longa, is known to sensitize tumors to different chemotherapeutic agents. The aim of this study is to evaluate whether curcumin can chemosensitize lung cancer cells to carboplatin and to analyze the signaling pathway underlying this synergism. We investigated the synergistic effect of both agents on cell proliferation, apoptosis, invasion, migration, and expression of related signaling proteins using the human NSCLC cell line, A549. A549 cell was treated with different concentrations of curcumin and carboplatin alone and in combination. Combined treatment with curcumin and carboplatin inhibited tumor cell growth, migration, and invasion compared with either drug alone. Matrix metalloproteinase (MMP)-2 and MMP-9 were more efficiently downregulated by co-treatment than by each treatment alone. mRNA and protein expression of caspase-3 and caspase-9 and proapoptotic genes was increased in cells treated with a combination of curcumin and carboplatin, whereas expression of the antiapoptotic Bcl-2 gene was suppressed. Co-treatment of both agents substantially suppressed NF-κB activation and increased expression of p53. Phosphorylation of Akt, a protein upstream of NF-κB, was reduced, resulting in inhibition of the degradation of inhibitor of κB(IκBα), whereas the activity of extracellular signal-regulated kinase (ERK1/2) was enhanced. Our study demonstrated that the synergistic antitumor activity of curcumin combined with carboplatin is mediated by multiple mechanisms involving suppression of NF-κB via inhibition of the Akt/IKKα pathway and enhanced ERK1/2 activity. Based on this mechanism, curcumin has potential as a chemosensitizer for carboplatin in the treatment of patients with NSCLC.  相似文献   

12.
I Tamm  I Cardinale  P B Sehgal 《Cytokine》1991,3(3):212-223
Interleukin-6 (IL-6) causes an epithelial to fibroblastoid conversion and an increase in the motility of human ductal breast carcinoma cell lines ZR-75-1 and T-47D. Although IL-6 decreases DNA synthetic activity in these cell lines, the IL-6-induced alterations in cell shape and motility occur independently of inhibition of DNA synthesis per se. Whereas tumor necrosis factor alpha (TNF-alpha) inhibits DNA synthesis in T-47D cells, it does not cause an epithelial-fibroblastoid conversion or other major morphological changes and does not increase cell motility; TNF-alpha rapidly lyses a majority of ZR-75-1 cells. Furthermore, the DNA synthesis inhibitors 5-fluoro-2'-deoxyuridine (FUDR) and methotrexate (MTX) also do not cause effects mimicking the action of IL-6 on cell structure and motility. Transforming growth factors alpha and beta 1, acidic and basic fibroblast growth factors, epidermal growth factor, and insulin-like growth factor-1 (TGF-alpha, TGF-beta 1, aFGF, bFGF, EGF, and IGF-1) have little or no effect on breast cancer cell morphology, which serves to exclude the possibility that the IL-6-induced changes are a consequence of induction of these growth factors by IL-6. 12-O-tetradecanoyl phorbol-13-acetate (TPA) but not 8-bromoadenosine 3',5'-cyclic monophosphate (Br-cAMP) induces changes in the morphology and associative behavior of ZR-75-1 cells that are similar but not identical to those caused by IL-6. The TPA-induced alterations are not blocked by anti-IL-6 neutralizing antibodies; staurosporine inhibits the TPA-induced cell alterations but not those induced by IL-6. IL-6 and TPA used together have a phenotypic effect that greatly exceeds that of either agent alone and results in extensive cell scattering in less than 1 day. These findings are consistent with the hypothesis that IL-6 and TPA induce similar morphological changes and cell scattering via independent pathways.  相似文献   

13.
We have investigated the mechanism of action of fetal calf serum (FCS) on GH3 pituitary tumour cells by measuring intracellular free calcium levels. On the addition of FCS (1%) there was a transient increase in intracellular Ca2+ levels which was attenuated in conditions of reduced extracellular calcium concentrations. The Ca2+ response was abolished by the prior addition of lanthanum chloride (1mM). In contrast, the elevation of cytosolic calcium levels by TRH (100nM), an agonist which causes the mobilisation of calcium from the endoplasmic reticulum, was attenuated but not abolished by lanthanum chloride (1mM). We suggest that FCS (1%) causes the release of calcium from the plasma membrane and the influx of calcium from the extracellular milieu, but does not mobilise calcium from the endoplasmic reticulum.  相似文献   

14.
MicroRNA (miRNA) is a small noncoding RNA molecule, 19–25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33 % in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50 % by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3′UTR (64–92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.  相似文献   

15.
Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner.  相似文献   

16.
There is a great desire to relate the patterns of endogenous peptides in blood to human disease and drug response. The best practices for the preparation of blood fluids for analysis are not clear and also relatively few of the peptides in blood have been identified by tandem mass spectrometry. We compared a number of sample preparation methods to extract endogenous peptides including C18 reversed phase, precipitation, and ultrafiltration. We examined the results of these sample preparation methods by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-tandem mass spectrometry (MS/MS) using MALDI-TOF/TOF and electrospray ionization-ion trap. Peptides from solid-phase extraction with C18 in the range of hundreds of femtomoles per spot were detected from the equivalent of 1 μL of serum by MALDI-TOF. We observed endogenous serum peptides from fibrinogen α- and β-chain, complement C3, α-2-HS-glycoprotein, albumin, serine (or cysteine) proteinase inhibitor, factor VIII, plasminogen, immunoglobulin, and other abundant blood proteins. However, we also recorded significant MS/MS spectra from tumor necrosis factor-α-, major histocompatibility complex-, and angiotensin-related peptides, as well as peptides from collagens and other low-abundance proteins. Amino acid substitutions were detected and a phosphorylated peptide was also observed. This is the first time the endogenous peptides of fetal serum have been examined by MS and where peptides from low-abundance proteins, phosphopeptides, and amino acid substitutions were detected.  相似文献   

17.
18.
19.
Cepharanthine (CEP), a biscoclaurine alkaloid, has been reported to induce cell death, however, the molecular mechanism of this phenomenon remains unclear. We herein report that CEP induced apoptosis in HuH-7 cells through nuclear fragmentation, DNA ladder formation, cytochrome c release, caspase-3 activation and poly-(ADP-ribose)-polymerase cleavage. CEP triggered the generation of reactive oxygen intermediates, the activation of mitogen activated protein kinase (MAPK) p38, JNK1/2 and p44/42, and the downregulation of protein kinase B/Akt. Antioxidants and SP600125, an inhibitor of JNK1/2, but not inhibitors of p38 MAPK and MEK1/2, significantly prevented cell death, thus implying that reactive oxygen species and JNK1/2 play crucial roles in the CEP-induced apoptosis of HuH-7 cells.  相似文献   

20.
Alveolar macrophages (AM) were collected by repeated endobronchial lavage from mice, rats, guinea pigs, and rabbits, and titrated into cultures of mitogen-stimulated syngeneic or autochthonous lymphocytes. Significant species differences were detected in regard to AM activity in the cultures. AM from guinea pigs and mice stimulated PHA-induced lymphoproliferation, while those from rats and rabbits were inhibitory; blood or peritoneal macrophages were not inhibitory in any of the species examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号