首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are potent vasorelaxant peptides. This study examined exercise-induced changes in CGRP and AM levels in 12 healthy sea level natives at sea level (SL) and subsequently after 24 h (HA1) and 5 days (HA5) in high altitude hypoxia (4559 m). Plasma values of CGRP, AM, calcitonin, noradrenaline, adrenaline, lactate and heart rate were measured at rest and during maximal exercise (W(max)). On each study day, the dopamine D(2)-receptor antagonist, domperidone (30 mg; n=6), or no medication (n=6) was given 1 h before exercise. W(max) at SL, HA1 and HA5 increased CGRP and AM along with heart rate, lactate and catecholamines, whereas, calcitonin remained unchanged. The maximal CGRP levels at W(max) were significantly decreased at HA1 (74.3+/-6.1 pmol/l; p=0.002) and HA5 (69.6+/-6.0 pmol/l; p<0.001) compared to maximal CGRP at SL (85.1+/-4.9 pmol/l). A similar pattern was observed for lactate and the relation between CGRP and lactate release showed a close linear correlation (r(2)=0.63, P<0.0001). Domperidone produced a marked increase in noradrenaline at W(max), but had no affect on CGRP or AM. In conclusion, CGRP release during hypoxic exercise does not respond to domperidone-induced changes in circulating levels of noradrenaline, rather the release may be directly related to the production of lactate.  相似文献   

2.
Calcitonin gene-related peptide (CGRP) was injected alone and in combination with substance P (SP) or neurokinin A (NKA) into the forearm skin and temporal muscle of human volunteers. In the skin, 50 pmol of CGRP induced a wheal response and a delayed erythema. No pain was recorded. No interaction between CGRP and SP or NKA was observed. In the temporal muscle, 200 pmol of CGRP alone did not induce pain or tenderness but, in combination with SP or NKA, CGRP elicited a significant pain sensation. It is concluded that CGRP may be involved in neurogenic inflammation and that only SP, of the three peptides present in nociceptive C fibers, seems to be of major importance in relation to cutaneous nociception. Simultaneous neurogenic release of CGRP and other neuropeptides in skeletal muscle may induce myofascial pain.  相似文献   

3.
The presence of calcitonin-gene related peptide (CGRP)-like immunoreactivity (-LI) in sensory neurons was established by immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-immunoreactive (-IR) nerve fibres were present in many peripheral organs including heart, ureter, uterus and gall bladder of guinea-pig and man. The distribution of CGRP-IR nerves in the dorsal horn of the spinal cord, of positive cell bodies in thoracic spinal and nodose ganglia and nerves in peripheral organs was closely related to that of substance P-LI. Double staining experiments revealed that in most cases peripheral CGRP-IR nerve terminals also contained SP-LI. However, different localization of SP- and CGRP-IR neurons was observed in the nucleus of the solitary tract as well as in the ventral horn of the spinal cord. In the heart, CGRP-IR nerves were associated with myocardial cells (mainly atria), coronary vessels, local parasympathetic ganglia as well as with the epi- and endocardia. Three to 4-fold higher levels of native CGRP-LI were observed in the atria than in the ventricles of the heart. HPLC analysis revealed that the major peak of CGRP-LI in the heart of rat and man had the same retention times as the synthetic equivalents. Systemic capsaicin pretreatment and adult guinea-pigs caused a loss of CGRP-IR terminals in the dorsal horn of the spinal cord as well as in peripheral organs including the heart. After capsaicin treatment, the content of CGRP-IR was reduced by 70% in the heart and by 60% in the dorsal part of the spinal cord. In superfusion experiments with slices from the rat spinal cord, a release of CGRP-LI was induced by 60 mM K+ and 3 microM capsaicin in a calcium-dependent manner.  相似文献   

4.
The influence of rat calcitonin gene-related peptide (rCGRP) on the secretion of gastric somatostatin and gastrin was studied in vitro using the isolated, vascularly perfused rat stomach preparation. rCGRP stimulated somatostatin secretion dose-dependently reaching 3-fold stimulation at 1 microM. The kinetics of somatostatin response were characterized by a sharp increase in the initial phase of rCGRP perfusion followed by sustained elevated levels. Gastrin secretion was moderately suppressed at 1 nM to 100 nM CGRP. Somatostatin responses to half-maximal stimulation with 100 nM CGRP were not affected by concomitant perfusion of atropine, propranolol, and tetrodotoxin. It is concluded that increases in somatostatin release in response to CGRP are probably due to a direct effect on the gastric somatostatin-producing D-cell and may be important for the potent acid-inhibitory activity of CGRP.  相似文献   

5.
The effect of calcitonin gene-related peptide (CGRP) on the feline lower esophageal sphincter (LES) was determined and correlated with its anatomic distribution as determined by immunohistochemistry. Intraluminal pressures of the esophagus and LES were recorded in anesthetized cats. In separate cats, gastroesophageal junctions were removed after locating the LES manometrically and stained for CGRP-like immunoreactivity (LI) and substance P-LI (SP-LI) by indirect immunohistochemistry. CGRP-LI in the LES was most prominent in large nerve fascicles between the circular and longitudinal muscle layers and only rarely seen in nerve fibers within the circular muscle. The myenteric plexus contained numerous CGRP-LI nerve fibers but cell bodies were not seen. Many CGRP-LI nerve fibers in the myenteric plexus and occasional varicose nerves in the circular muscle demonstrated colocalization with SP-LI. Colocalization of CGRP-LI with SP-LI was also seen in the perivascular nerves of the submucosal and intramural blood vessels and in varicose fibers in the lamina propria of the gastric fundic mucosa. In the esophagus, CGRP-LI nerves extended through the muscularis mucosa and penetrated the squamous epithelium to the lumen. CGRP, given intra-arterially caused a dose-dependent fall in basal LES pressure, with a threshold dose of 10(-8) g/kg (2.63 pmol/kg). At the maximal effective dose, 5 x 10(-6) g/kg (1.31 x 10(3) pmol/kg), CGRP produced 61.0 +/- 6.0% decrease in basal LES pressure. At this dose, mean systemic blood pressure fell by 40.9 +/- 7.8%. The LES relaxation induced by a submaximal dose of CGRP (10(-6) g/kg, 262.7 pmol/kg), 50.3 +/- 3.2% relaxation was partially inhibited by tetrodotoxin (26.9 +/- 10.8% relaxation, P less than 0.025). The inhibitory effect of CGRP was not affected by cervical vagotomy, hexamethonium, atropine, propranolol, or naloxone. The LES contractile response to the D90 of SP (5 x 10(-8) g/kg, 37.1 pmol/kg) was not altered by CGRP 10(-8) or 10(-6) g/kg and the CGRP relaxation effect was not altered by the threshold dose of substance P (5 X 10(-9) g/kg, 3.71 pmol/kg). CONCLUSIONS: (1) CGRP-LI is present at the feline LES and is primarily seen in large nerve fascicles which pass from the intermuscular plane and through the circular muscle layer to the submucosa and in mucosal nerves. (2) CGRP colocalizes with SP-LI in some varicose nerve fibers of the circular muscle of the esophagus, LES and fundus, in perivascular nerves of the submucosal and intramucosal blood vessels, and in nerves of the lamina propria of the gastric fundus. (3) The luminal penetration of CGRP-LI nerves in the squamous mucosa of the esophagus suggests a sensory func  相似文献   

6.
The occurrence and distribution of calcitonin gene-related peptide (CGRP) in the lower airways was studied by means of immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-like immunoreactivity (-LI) was observed in nerves from the epiglottis down to peripheral bronchi in rat, cat and guinea pig and also in human bronchi. Double staining revealed colocalization of CGRP-LI and substance P (SP)-LI in cell bodies of nodose and jugular ganglia as well as in axons and nerve terminals of the airways. Systemic capsaicin pretreatment induced a marked loss of the CGRP- and SP-immunoreactive (-IR) nerves in the lower airways. CGRP-IR was also present in epithelial endocrine cells and neuroepithelial bodies. The content of CGRP-LI as measured with RIA in guinea pig bronchi was significantly lower after capsaicin pretreatment. Analysis of human bronchial extracts revealed that CGRP-LI coeluted with synthetic human CGRP on HPLC. In the isolated perfused guinea pig lung capsaicin exposure caused overflow of CGRP-LI suggesting release from peripheral branches of sensory nerves. Both in vivo experiments in the guinea pig measuring insufflation pressure as well as in vitro studies on isolated guinea pig and human bronchi showed that whereas tachykinins contracted bronchial smooth muscle no contractile or relaxing effect was elicited by human or rat CGRP. However, CGRP caused relaxation of serotonin precontracted guinea pig and human pulmonary arteries. In conclusion, the presence and release of CGRP-LI from capsaicin sensitive nerves in the lower airways adds another possible mediator, in addition to tachykinins, of vascular reactions upon sensory nerve irritation.  相似文献   

7.
Calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI) in the human hypothalamus was investigated by radioimmunoassay and by immunocytochemistry. CGRP-LI was detected from two hypothalami obtained at autopsy (2.1 and 7.0 ng/g wet tissue) by radioimmunoassay. Reverse phase high performance liquid chromatography revealed that most of the CGRP-LI in the human hypothalamus was eluted in an identical position with synthetic human CGRP. For immunocytochemistry, human hypothalami obtained at autopsy were fixed and cryostat-sectioned at 40 microns. Free floating sections were immunostained with antibody to CGRP. CGRP-immunoreactive cell bodies were found in the supraoptic nucleus, paraventricular nucleus and infundibular nucleus. These findings indicate that CGRP exists in the cell bodies of the supraoptic nucleus, paraventricular nucleus and infundibular nucleus in the human hypothalamus and CGRP may play some roles in the endocrine and other functions of the human hypothalamus.  相似文献   

8.
The distribution of perivascular nerve fibers displaying calcitonin gene-related peptide (CGRP) immunoreactivity and the effect of CGRP on vascular smooth muscle were studied in the guinea-pig. Perivascular CGRP fibers were seen in all vascular beds. Generally, they were more numerous around arteries than veins. Small arteries in the respiratory tract, gastrointestinal tract and genitourinary tract had numerous CGRP fibers. The gastroepiploic artery in particular received a rich supply of such fibers. Coronary blood vessels had a moderate supply of CGRP fibers. In the heart, a moderate number of CGRP fibers was seen running close to myocardial fibers. The atria had a richer supply than the ventricles. Numerous CGRP immunoreactive nerve cell bodies and nerve fibers were seen in sensory (trigeminal, jugular and spinal dorsal root) ganglia. Sequential or double immunostaining with antibodies against substance P and CGRP suggested co-existence of the two peptides in nerve cell bodies in the ganglia and in perivascular fibers. In agreement with previous findings CGRP turned out to be a strong vasodilator in vitro as tested on several blood vessels (e.g. basilar, gastroepiploic and mesenteric arteries). Conceivably, perivascular CGRP/SP fibers have a dual role as regulator of local blood flow and as carrier of sensory information.  相似文献   

9.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

10.
11.
The distribution of calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibres in the palate of rat, cat and monkey was studied using immunocytochemistry and radioimmunoassay. CGRP-containing nerve fibres were found, in all species studied, to form a rich plexus in the subepithelial and submucous layers, around excretory ducts and blood vessels. A small number of CGRP-containing nerve fibres penetrated the epithelium of the hard and soft palate, and terminated as free endings. Some CGRP-containing nerve fibres were found in the vicinity of the mucous glands. CGRP-immunoreactive motor end plates were seen in the striated muscle (tensor veli palatini) of the soft palate. Following capsaicin treatment a small depletion in CGRP-immunoreactive nerve fibres in the rat palate epithelium was noted. In contrast, CGRP immunoreactive fibres forming rich plexuses in other layers of the palate, including motor end plates, were not affected. The extractable CGRP showed no significant depletion (normal animals [n = 10] 21.7 +/- 2.4 pmol/g compared with capsaicin-treated animals [n = 10] 17.5 +/- 1.8 pmol CGRP/g wet weight). The reduction in the number of visible immunoreactive nerves following capsaicin application tends to confirm the sensory character of the CGRP-containing nerve fibres terminating in the epithelium of the hard and soft palate. The capsaicin insensitive CGRP-immunoreactive nerve fibres may thus have a predominantly motor function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Calcitonin gene-related peptide and its receptor in the thymus   总被引:2,自引:0,他引:2  
Calcitonin gene-related peptide (CGRP), a 37-amino acid residue neuropeptide, was immunostained in rat thymus at two sites: a subpopulation of thymic epithelial cells, namely subcapsular/perivascular cells, were heavily stained besides some nerve fibers surrounding arteries and arterioles. The administration of nanomolar concentrations of rat -CGRP dose-dependently raised intracellular cyclic adenosine monophosphate (cAMP) levels in isolated rat thymocytes (half-maximum stimulation 1 nM) but not in cultured rat thymic epithelial cells. Peptides structurally related to CGRP (i.e., rat calcitonin or amylin) had no effect. CGRP(8–37), an N-terminally truncated form, acted as an antagonist. Peripheral blood lymphocytes did not respond to CGRP, suggesting that receptors are present only on a subpopulation of thymocytes but not on mature T cells. This was substantiated by visualization of CGRP receptors on single cells by use of CGRP-gold and -biotin conjugates of established biological activity: only a small proportion of isolated thymocytes was surface labeled. In situ, the CGRP conjugates labeled receptors on large thymocytes residing in the outer cortical region of rat thymus pseudolobules. Thus, immunoreactive CGRP is found in subcapsular/perivascular thymic epithelial cells and acts via specific CGRP receptors on thymocytes by raising their intracellular cAMP level. It is suggested that CGRP is a paracrine thymic mediator that might influence the differentiation, maturation, and proliferation of thymocytes.  相似文献   

13.
R L Shew  R E Papka  D L McNeill 《Peptides》1990,11(3):583-589
The influence of calcitonin gene-related peptide (CGRP) on rat uterine activity was examined in concert with the anatomical distribution of CGRP-like immunoreactivity in the uterus. CGRP-like immunoreactivity was localized in nerve fibers; these peptide-containing nerves were abundant throughout the mesometrium of the uterine horn and appeared to innervate mesometrial smooth muscle and vascular smooth muscle. In the uterine wall, CGRP-like immunoreactive fibers were prevalent in the myometrium, endometrium and the endocervix. Fibers in the endometrium and endocervix appeared to form a plexus subjacent to the epithelium and some fibers penetrated the epithelium as an intraepithelial plexus. The action of CGRP (10(-9) to 10(-6) M) on acetylcholine (10(-6) or 10(-5) M)-stimulated uterine activity was examined in vitro. Exogenously applied CGRP induced a dose-dependent relaxation of acetylcholine-stimulated uterine contractions. CGRP had no effect on basal uterine tension. The localization of CGRP-like immunoreactivity in nerves and the relaxing effect of CGRP suggests a role for CGRP-containing nerve fibers in the regulation of uterine activity.  相似文献   

14.
The effects of synthetic human calcitonin gene-related peptide (CGRP) on nociceptive response were evaluated in rats by two behavioral tests (tail-flick and hot-plate) and by electrophysiological recording of the firing of thalamic neurons evoked by peripheral noxious mechanical stimuli. CGRP was administered intracerebroventricularly (i.c.v.) and its effects were compared with that of salmon calcitonin (sCT). In the tail-flick test, CGRP (0.25, 2.5 and 5 micrograms/rat) dose-dependently increased response latencies, whereas sCT (0.125, 2.5, 5 and 10 micrograms/rat) did not. Conversely, in the hot-plate test CGRP was effective in enhancing response latencies only at the highest dose of 10 micrograms/rat, while sCT (0.125, 0.25 and 2.5 micrograms/rat) inhibited the hot-plate response dose-dependently. In electrophysiological studies, CGRP (2.5 micrograms/rat, i.c.v.) completely inhibited the evoked neuronal thalamic firing and the same dose of sCT induced only a partial reduction. Furthermore, the antinociceptive effects of CGRP in the tail-flick test and in the electrophysiological studies were not prevented by naloxone. These results demonstrate that central administration of CGRP is effective in inhibiting nociceptive responses and its action like that of sCT does not involve an opioid mechanism. The differences in the antinociceptive profiles of CGRP and sCT suggest that the inhibitory effects of these peptides may involve different neuronal pathways.  相似文献   

15.
The post-prandial release of glucagon-like peptide-1 (GLP-1) from the distal gut appears to involve a neural reflex that arises from the proximal gut. The neuropeptide calcitonin gene-related peptide (CGRP)'s potent stimulatory effect on GLP-1 release was characterized, using the isolated vascularly perfused rat ileum. CGRP, but not its homolog amylin, induced a dose-dependent and sustained release of GLP-1. This effect was greatly reduced in the presence of CGRP(8-37), was abolished by galanin, potentiated by luminal glucose and unaffected by atropine. GIP enhanced, but did not potentiate, this effect. The results reveal how CGRP is involved in the complex regulation of GLP-1 release.  相似文献   

16.
The overflow of calcitonin gene-related peptide like-immunoreactivity (CGRP-LI) in the nasal venous effluent upon antidromic stimulation of the maxillary division of the trigeminal nerve with 6.9 Hz for 3 min or upon capsaicin (0.3 mumol bolus injection) were analysed in the nasal mucosa of sympathectomized pentobarbital anaesthetized pigs. The overflow of CGRP-LI upon antidromic stimulation displayed a slower appearance in the venous effluent than the overflow upon bolus injection of capsaicin. The vascular effects as revealed by the arterial blood flow, the venous blood flow, the blood volume of the nasal mucosa, i.e., the filling of the capacitance vessels and the superficial mucosal blood flow as revealed by the laser-Doppler signal were also studied. Antidromic stimulation of the trigeminal nerve as well as capsaicin bolus injection induced a marked vasodilation which was parallel to the overflow of CGRP. However, capsaicin bolus injection also resulted in a marked increase in the mean arterial blood pressure which may be due to reflex activation of sympathetic fibers. In conclusion, we have demonstrated that chemical stimulation with capsaicin as well as antidromic stimulation of nasal sensory nerves in sympathectomized animals induces both vasodilation and overflow of CGRP-LI in vivo. This indicates that CGRP may contribute to the sensory regulation of the microcirculation in the nasal mucosa.  相似文献   

17.
Summary The distribution of calcitonin gene-related peptide-immunoreactive nerve fibers in the renal pelvis and ureter was examined by immunohistochemistry using whole-mount preparations and cryostat sections. The patterns of innervation were contrasted between the pelvis and ureter; the immunoreactive nerve fibers in the pelvis ran parallel to the long axis of each of the circular and longitudinal muscle layers, causing a lattice-like appearance of the nerve fibers. In the ureter, the immunoreactive fibers were accumulated in the subepithelial region and the longitudinal muscle. In both the pelvis and ureter, a portion of the nerve fibers of smaller caliber showed a swollen or beaded structure; they were located in the musculature and beneath the epithelium extending for considerable distances. Ligation of the ureter caused a marked decrease in the immunoreactive nerves in the pelvis and the proximal portion of the ureter, suggesting that the axonal flow in the calcitonin gene-related peptide-containing neurons of the ureter runs towards the pelvis.  相似文献   

18.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

19.
The effects of intracerebroventricular (ICV) and intrathecal (IT) administration of calcitonin gene-related peptide (CGRP) on intestinal motility were examined in conscious rats chronically fitted with intraparietal electrodes in the duodeno-jejunum and a cannula in a cerebral lateral ventricle or catheter in the subarachnoid space. ICV administration of CGRP (0.5–10 μg) restores the fasted pattern of intestinal motility in fed rats in a dose-related manner. Intrathecal administration of CGRP or calcitonin also induces fasted pattern but after a 30 min delay. These effects persisted after transection of the spinal cord and no change in intestinal motility appeared after intravenous administration of CGRP at a dose effective when given IT. This study suggests that CGRP, as calcitonin, has a neuromodulatory role in the control of intestinal motility at both brain and spinal cord levels.  相似文献   

20.
We show that an autocrine system for calcitonin gene-related peptide (CGRP) exists in F9 teratocarcinoma cells. Synthesis of CGRP by F9 cells was demonstrated by measuring the peptide concentration in cells and medium and by determining specific mRNA in cells. During six days of culture, CGRP secretion did not vary significantly in the medium, while intracellular CGRP and CGRP mRNA levels increased. F9 cells contained a CGRP-sensitive adenylate cyclase system and CGRP increases the accumulation of cAMP in the culture medium. Interestingly affinity purified antibodies against CGRP specifically inhibited growth of F9 cells by 50%. CGRP therefore stimulates F9 cell growth by an autocrine process, suggesting that CGRP may be a growth factor during early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号