首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Epidermal differentiation is accompanied by profound changes in the synthesis of a variety of intracellular proteins and intercellular lipids. In conventional, submerged culture keratinocytes have been shown to lose the ability to synthesize the protein markers of differentiation. They re-express them, however, when they are cultured in medium supplemented with delipidized [retinoic acid (RA)-depleted] serum or in air-exposed cultures using de-epidermized dermis (DED) as a substrate. Recent studies have revealed that acylceramides (AC) and lanosterol (LAN), which are present only in trace amounts in cultures of keratinocytes grown under submerged conditions on DED in medium supplemented with normal serum, become expressed in significant amounts when the culture is lifted to the air-liquid interface. Inasmuch as culture conditions may markedly affect the extent of keratinocyte differentiation, the present study aimed to investigate the effect of normal (RA-containing) or delipidized (RA-depleted) serum and of RA administration on lipid composition (especially of the AC and LAN contents) in cells cultured under submerged and air-exposed conditions. To test a possible effect of dermal substrate (used in the air-exposed model), the lipid composition of keratinocytes grown under submerged conditions on a plastic and on a dermal substrate (de-epidermized dermis, DED) has also been compared. The results revealed that under all culture conditions, RA deprivation of fetal bovine serum resulted in a marked increase of total ceramide content. Even under submerged conditions, the presence of both AC and LAN could be detected. In air-exposed culture, the content of these lipids was markedly increased. Addition of RA at 1 μM concentration to cultures grown in RA-depleted medium induced marked changes in lipid composition under all culture conditions tested. In cells grown under submerged conditions (both on plastic and on DED) AC and LAN were no longer present in detectable amounts. Also in air-exposed culture, a marked decrease in the content of these lipids was observed. These results suggest that liposoluble serum components, like RA, control the synthesis of lipids that are present in later stages of epidermal differentiation.  相似文献   

2.
Epidermal differentiation results in the formation of the extracellular lipid barrier in the stratum corneum, which mainly consists of ceramides, free fatty acids, and cholesterol. Differentiating keratinocytes of the stratum granulosum synthesize a series of complex long-chain ceramides and glucosylceramides with different chain lengths and hydroxylation patterns at intracellular membranes of the secretory pathway. Formation of complex extracellular ceramides parallels the transition of keratinocytes from the stratum granulosum to the stratum corneum, where their precursors, complex glucosylceramides and sphingomyelin, are secreted and exposed to extracellular lysosomal lipid hydrolases. Submerged cultures used so far showed a reduced ceramide content compared to the native epidermis or the air-exposed, organotypic culture system. In order to investigate the sphingolipid metabolism during keratinocyte differentiation, we optimized a simple cell culture system to generate the major barrier sphingolipids. This optimized model is based on the chemically well-defined serum-free MCDB medium. At low calcium ion concentrations (0.1mM), keratinocytes proliferate and synthesize mainly Cer(NS) and a small amount of Cer(NP). Supplementation of the MCDB cell culture medium with calcium ions (1.1mM) and 10 microM linoleic acid triggered differentiation of keratinocytes and synthesis of a complex pattern of free and covalently bound ceramides as found in native epidermis or air-exposed organotypic cultures, though at a reduced level. The mRNA levels of the differentiation markers keratin 10 and profilaggrin increased, as well as those of ceramide glucosyltransferase and glucosylceramide-beta-glucosidase. The described culture system was thus suitable for biochemical studies of the sphingolipid metabolism during keratinocyte differentiation. The addition of serum or vitamin A to the medium resulted in a decrease in ceramide and glucosylceramide content. Lowering the medium pH to 6, while maintained cell viability, led to an increase in the processing of probarrier lipids glucosylceramide and sphingomyelin to free ceramides and protein-bound ceramide Cer(OS).  相似文献   

3.
Crucial role of fibroblasts in regulating epidermal morphogenesis   总被引:5,自引:0,他引:5  
Epidermis reconstructed on de-epidermized dermis (DED) was used to investigate whether fibroblasts can substitute growth factors needed for generation of a fully differentiated epidermis. For this purpose, a centrifugal seeding method was developed to reproducibly incorporate different fibroblast numbers into DED. Using (immuno)histochemical techniques, we could demonstrate that in the absence of fibroblasts the formed epidermis consisted only of two to three viable cell layers with a very thin stratum corneum layer. However, in the presence of fibroblasts keratinocyte proliferation and migration was stimulated and epidermal morphology markedly improved. The stimulatory effect of fibroblasts showed a biphasic character: keratinocyte proliferation increased in the initial phase but decreased in later stages of cell culture. After 3 weeks culture at the air-liquid interface, the proliferation index decreased irrespective of the number of fibroblasts present within the dermal matrix to levels observed also in native epidermis. Keratin 10 was localized in all viable suprabasal cell layers irrespective of the absence or presence of fibroblasts. Keratin 6 was downregulated with increasing numbers of fibroblasts, and keratins 16 and 17 were absent in fibroblast-populated matrices. The expression of involucrin or transglutaminase 1 showed a similar pattern as for the keratins. Irrespective of the number of fibroblasts incorporated into DED, the expression of alpha(3), alpha(6), beta(1), and beta(4) integrin subunits was upregulated. In fibroblast-free DED matrices normalization of epidermal differentiation was only achieved when the culture medium was supplemented by keratinocyte growth factor. The results of this study indicate that normalization of epidermal differentiation can be achieved using a non-contractile dermal matrix populated with fibroblasts.  相似文献   

4.
The differentiation of human keratinocytes in most culture systems is incomplete; e.g., lamellar bodies, the characteristic lipid-delivery organelles of epidermis, are not present. Moreover, their lipid profile does not reflect the distinctive composition found in cornifying epidermis. In contrast, keratinocytes that grow at an air-medium interface exhibit more complete differentiation. In this study, we compared the elaboration of lamellar bodies, the lipid content, and the lipid metabolism of human keratinocytes, cultured both under standard immersed conditions and after lifting to an air-medium interface. Whereas submerged cultures neither elaborated lamellar bodies nor displayed a lipid distribution characteristic of cornifying epidermis, lifted cultures displayed advanced cornification, elaborated lamellar bodies which were deposited in intercellular domains, and a lipid profile more typical of cornifying epidermis. Moreover, lipid biosynthesis was 5-10-fold more active in lifted than in immersed cultures, and was not inhibited by exogenous lipoproteins. These findings are consistent with recent studies that demonstrate both high rates of lipogenesis in differentiating layers of the epidermis as well as autonomy of lipogenesis from the influence of circulating lipoproteins. Thus, the lipid content and metabolism of human keratinocyte cultures, grown at an air-medium interface, demonstrate features that simulate the epidermis.  相似文献   

5.
6.
The effect of the carbon to nitrogen (C/N) ratio of the medium and the aeration rate on the lipid content and fatty acid composition ofChlorella sorokiniana was investigated using heterotrophic, batch culture. Both parameters had a significant effect. A C/N ratio of approximately 20, was found to indicate a change from carbon to nitrogen limitation forC. sorokiniana. Cell lipid content was at a minimum at this value and increased at both higher and lower C/N values. Low C/N ratios favoured a high proportion of trienoic fatty acids at the expense of monoenoic acids. Aeration enhanced cell growth, fatty acid yield and the synthesis of unsaturated dienoic and trienoic fatty acids, but reduced cell lipid content. The results demonstrate that the fatty acid composition and lipid content of heterotrophically-grown microalgae can be favourably manipulated by varying culture conditions.  相似文献   

7.
Galaxias maculatus eggs and larvae obtained from broodfish captured either in an estuarine or a freshwater environment, as well as from cultured broodstock were analysed to compare their lipid and fatty acid profiles. Results showed a lower lipid content in embryos and larvae from estuarine populations than those from fresh water, denoting the influence of environmental conditions. The n-3:n-6 ratio was higher in eggs from estuarine and cultured populations, being in the range of marine fishes, whereas for eggs from freshwater fish was lower and typical of freshwater fishes. The polyunsaturated fatty acids (PUFA), particularly docosahexaenoic acid (22:6n-3) and eicosapentaenoic acid (20:5n-3), were higher in eggs and larvae of broodstock coming from culture or estuarine environments than in those from fresh water. Moreover, these fatty acids markedly increased after hatching in larvae coming from estuarine populations, suggesting the effect of the environment on fatty acid profiles to physiologically prepare the larvae to adapt to higher salinity conditions. Linoleic acid (18:2n-6) content was higher in fresh water fish and its reduction during embryo and larval development was accompanied by a significant increase of arachidonic acid (20:4n-6), which was not observed in embryos or larvae from broodstock fish from estuary or aquaculture origin. Both environment and diet of broodstock fish affected lipid and fatty acid composition of G. maculatus embryo and larvae as well as their changes during development.  相似文献   

8.
Microbial lipids produced byRhodotorula glutinis grown in continuous culture with molasses under nitrogen-limiting conditions were evaluated and the effects of growth rate on fatty acid composition were studied. As the growth rate decreased, cell biomass, lipid content and lipid yield gradually increased. The maximum lipid content recorded was 39% (w/w) of dry cell biomass at a dilution rate of 0.04 h–1. The growth rate also affected fatty acid composition: oleic acid decreased with decreasing growth rate while stearic acid increased.  相似文献   

9.
Changes in lipid composition and function of subcellular organelles have been described in transplanted and primary tumours. We examine here the fatty acid composition of individual phospholipids (PL) in hyperplastic nodules and primary hepatoma induced by diethylnitrosamine (DEN), compared to that of normal liver and of transplantable Yoshida AH-130 hepatoma. Phosphatidylcholine and phosphatidylethanolamine fatty acid composition in mitochondria and microsomes from primary hepatoma were markedly different from normal liver; C18:0/C18:1 ratio was lower and the ratio between monosaturated and polyunsaturated fatty acids was higher. Linoleic acid content of mitochondrial cardiolipin, usually very high in normal rat liver, was notably lower in primary hepatoma. Cholesterol/phospholipid ratio in both microsomes and mitochondria from DEN-induced hepatoma was higher than in normal liver. Hyperplastic nodules showed no changes in cholesterol content whereas modifications in fatty acid composition were already observable. These modifications of membrane structure may be related to the functional changes found in nodular cells. Changes in fatty acid composition of membrane phospholipids, occurring in both primary hepatoma and preneoplastic nodules, might be one of the causes for decreased rate of lipid peroxidation peculiar to these tissues.  相似文献   

10.
Summary The fatty acid composition of cultured human skin fibroblasts was modified by adding either oleic or linoleic acid to the growth medium. After the cultures became confluent, they were washed and transferred to different maintenance media in order to determine the stability of the various fatty acyl modifications. Some changes in fatty acid composition occurred under all conditions. When the maintenance medium was supplemented with fatty acid, the cellular neutral lipid and phospholipid fatty acyl composition were altered markedly within 16 to 24 hr. If no supplemental fatty acid was available during the maintenance period, however, the modified fatty acyl compositions were sufficiently retained so that appreciable differences between the cells enriched with oleate and linoleate persisted for at least 48 to 72 hr. This considerable degree of stability occurred when either 10% delipidized fetal bovine serum or 10% fetal bovine serum containing its inherent lipids were present in the maintenance medium. Although the triglyceride content of the fatty acid-modified cells was quite labile, neither the cholesterol nor phospholipid content changed appreciably during culture in any of the maintenance media. Since the fatty acid compositional differences persisted during several days of maintenance under certain conditions, these modified cultures appear to be a useful experimental system for assessing the effect of lipid structure on fairly long-term cellular functions. This work was supported by Arteriosclerosis Specialized Center of Research Grant HL14230 from the National Heart, Lung and Blood Institute, National Institutes of Health.  相似文献   

11.
Sato S  Hirayama T  Hirazawa N 《Parasitology》2008,135(8):967-975
Neobenedenia girellae, a capsalid monogenean, is a destructive fish parasite. We studied the lipid content and fatty acid composition of N. girellae and the skin and cutaneous mucus of a host fish, the amberjack Seriola dumerili (Carangidae). The lipid content of adult N. girellae was less than one-fourth that of both the skin and cutaneous mucus of its host. Adult N. girellae, S. dumerili skin and mucus had a relatively high weight-percentage of C16:0, C18:1(n-9), C18:0 and C22:6(n-3) fatty acids. When S. dumerili were fed a diet supplemented with [13C] fatty acids, [13C] fatty acids were detected in S. dumerili skin and adult N. girellae on S. dumerili, but no [13C] fatty acids were detected in the S. dumerili cutaneous mucus. In addition, the epidermis of S. dumerili, attached with N. girellae, was markedly thin. These results suggest that N. girellae feeds primarily on host epithelial cells. We then infected 2 host fishes, S. dumerili and the spotted halibut Verasper variegatus (Pleuronectidae; a host less susceptible to N. girellae infection), and compared the fatty acid composition of N. girellae with that of the skin and cutaneous mucus of the hosts. The fatty acid profiles from all samples were qualitatively and quantitatively similar. Thus, the fatty acid composition of the host may not contribute to the difference in susceptibility between S. dumerili and V. variegatus. These results may serve to develop new strategies for the control of N. girellae infections.  相似文献   

12.
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.  相似文献   

13.
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.  相似文献   

14.
The neutral lipid fraction of the aerobically grown starter yeast culture of a Saccharomyces cerevisiae brewing strain, and three-first recycled yeast generations exposed to multiple stress factors during beer fermentation was studied. No pronounced changes in the cellular neutral lipid content between the non-stressed starter and stressed recycled cells were found. However, it was found that recycled yeast generations modulate their neutral lipid composition during fermentation. The ergosterol content was increased at the expense of steryl esters (SEs) and squalene, which resulted in a higher ergosterol/SEs molar ratio and a slightly higher ergosterol/squalene molar ratio. In addition, the proportion of unsaturated fatty acids, mainly palmitoleic acid increased in the neutral lipid fraction of the stressed recycled yeast generations. These results suggest that some specific neutral lipid species and fatty acids stored in the neutral lipid fraction are involved in the adaptive response of the brewer’s yeast to stressful fermentation conditions. The striking finding was a high squalene content in the neutral lipid fraction of both the starter yeast culture and recycled yeast generations (22.4 vs. 19–20%, respectively), implying a possible biotechnological exploitation of this biologically active molecule from the yeast biomass.  相似文献   

15.
Epidermal growth factor is an important element in maintaining keratinocyte proliferation and maturation. To evaluate its effect on keratinocyte growth in vitro, human foreskins were cultured. The epidermal keratinocyte growth in culture was separated into two stages by a conditional medium: the proliferation stage, in which the cells were maintained in a monolayer; and the differentiation stage, in which the cells grew to stratification and keratinization. The keratinocytes were cultured in various concentrations of epidermal growth factor, and their morphology and growth behavior were closely observed. Our results demonstrated that cultured keratinocytes grew in a confluent layer under the influence of epidermal growth factor. In contrast, in a culture without epidermal growth factor, the proliferation rate of cultured keratinocytes slowed down and eventually the cells stopped growing. During serum stimulation, with or without additional exogenous epidermal growth factor, the cultured keratinocytes grew continuously to the normal terminal differentiation. Under this two-stage culture model, the cultured keratinocytes could grow into an intact sheet of graftable epidermis.  相似文献   

16.
We examined the influence of the reproductive cycle and environmental factors on variations of the condition index (CI), tissue dry mass, shell size, total lipid content, and relative percent of fatty acids in the mussel, Perna perna. Spat or juveniles were reared to commercial size (70 mm) in suspension culture in the Golfo de Cariaco, Venezuela between May and October 2004. The dry mass of soft tissues and shell, a visual assessment of gonadal status and the organism lipid profile were established every fortnight. In parallel, we measured the environmental conditions, following chlorophyll a, salinity, temperature and seston levels. After an initial decrease, the CI rose and remained high until August after which it decreased continuously until October. Total lipid values also decreased initially, after which they showed two periods of rapid recuperation and depletion, the first between May and August and the second between August and October. Similar tendencies were noted in the fatty acids, C18:3n-3, C18:4n-3 and C22:6n-3. Correlation analysis found no significant relationships between environmental parameters and the variations in total lipids. However, significant correlations were noted between fatty acids and specific environmental parameters. In particular, temperature was inversely correlated with C14:0, C16:1n-7, C18:0, C18:1n-9 and 20:5n-3. Chlorophyll a was positively correlated with C14:0, C16:1n-7, C18:1n-7, C18:4n-3 and 20:4n-6. On the other hand, gametogenesis had an effect on C14:0, C16:1n-7, C18:1n-9 and C18:1n-7, while spawned and gonadal regression states had an effect on fatty acid 20:4n-6. Temperature and chlorophyll a levels strongly influenced the proportion of mussels spawning, suggesting that their influence upon lipid composition may be secondary to their impact upon reproduction. Despite the thermal stability of this tropical system, the lipid composition of mussels changed markedly during the study, reflecting the central role of diet and reproductive investment upon lipid composition.  相似文献   

17.
The growth conditions known to influence the occurrence of mitochondrial profiles and other cell membrane systems in anaerobic cells of S. cerevisiae have been examined, and the effect of the several growth media on the lipid composition of the organism has been determined. The anaerobic cell type containing neither detectable mitochondrial profiles nor the large cell vacuole may be obtained by the culture of the organism on growth-limiting levels of the lipids, ergosterol, and unsaturated fatty acids. Under these conditions, the organism has a high content of short-chain saturated fatty acids (10:0, 12:0), phosphatidyl choline, and squalene, compared with aerobically grown cells, and it is especially low in phosphatidyl ethanolamine and the glycerol phosphatides (phosphatidyl glycerol + cardiolipin). The high levels of unsaturated fatty acids normally found in the phospholipids of the aerobic cells are largely replaced by the short-chain saturated acids, even though the phospholipid fraction contains virtually all of the small amounts of unsaturated fatty acid present in the anaerobic cells. Such anaerobic cells may contain as little as 0.12 mg of ergosterol per g dry weight of cells while the aerobic cells contain about 6 mg of ergosterol per g dry weight. Anaerobic cell types containing mitochondrial profiles can be obtained by the culture of the organism in the presence of excess quantities of ergosterol and unsaturated fatty acids. Such cells have increased levels of total phospholipid, ergosterol, and unsaturated fatty acids, although these compounds do not reach the levels found in aerobic cells. The level of ergosterol in anaerobic cells is markedly influenced by the nature of the carbohydrate in the medium; those cells grown on galactose media supplemented with ergosterol and unsaturated fatty acids have well defined mitochondrial profiles and an ergosterol content (2 mg per g dry weight of cells) three times that of equivalent glucose-grown cells which have poorly defined organelle profiles. Anaerobic cells which are low in ergosterol synthesize increased amounts of squalene.  相似文献   

18.
In the present study, the lipid raft composition of a canine mastocytoma cell line (C2) was analyzed. Lipid rafts were well separated from non-raft plasma membranes using a detergent-free isolation technique. To study the influence of n-3 and n-6 polyunsaturated fatty acids (PUFA) on raft fatty acid composition in comparison to non-raft cell membrane, C2 were supplemented with one of the following: α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid or arachidonic acid. Enrichment of the culture medium with a specific PUFA resulted in an increase in the content of this fatty acid both in rafts and non-raft membranes. Contents of cholesterol and protein were found not to be affected by the changes in the fatty acid profiles. In conclusion, our data provide strong evidence that PUFA modulate lipid composition and physiological properties of membrane micro domains of mast cells which in turn may have effects on mast cell function.  相似文献   

19.
Relative polyunsaturated fatty acid content and unsaturation index are very important composition variables in the use of microalgae both for animal and human nutrition and biofuel production. A readily available technique to rapidly and inexpensively estimate relative fatty acid composition is very important for mass screening of new strains for the production of different types of oil. This study demonstrates the validity of Nile Red staining and flow cytometry for quick estimation of unsaturation index and relative fatty acid content in microalgae. Nile Red staining allows polar and neutral lipid contents to be estimated, and in this study a significant correlation was observed between polar/neutral ratio and fatty acid content in the species studied, corresponding to higher polyunsaturated fatty acid content in the polar lipid fraction of microalgae. This technique enables quick estimation of relative polyunsaturated fatty acid content and interspecific variation, as well as variations caused by culture conditions. In the species studied, most variability in fatty acid composition was due to variation in monounsaturated and polyunsaturated fatty acids, with less variation observed in saturated fatty acid content.  相似文献   

20.
Changes in the membrane lipid and sterols content and composition were studied during induction and differentiation in callus cultures of Brassica napus var. oleifera. Callus induction was associated with an increase of DGDG content, significant changes in fatty acids composition of all lipid fractions and increased degree of lipid unsaturation. The membrane lipid composition of tissue at different degrees of differentiation was found to vary significantly, particularly two weeks after transfer of callus to regeneration medium. The main differences concerned the content and composition of galactolipids. Curiously in many cases, these differences declined during subsequent culture, in spite of the morphogenesis process which was in progress. Another result of differentiation was the change in free sterol composition: in shoot regenerating calli the content of stigmasterol had rose whereas the accumulation of campesterol decreased. Even though observed changes in membrane properties may not play a role in morphogenesis they are nevertheless useful as developmental markers and can be invaluable in understanding biochemical basis of morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号