首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Panacanthus pallicornis is a neotropical species of katydid endemic to Colombia that inhabits premontane forests, and individuals are found in regenerating (RF) and dense forest (DF) habits. Members of this species are made conspicuous by their colouration, remarkable defensive body thorns and the loud mating calls of the males. Through capture, marking, and recapture, we determined singing‐site characteristics in two different natural habitats: an RF and a DF. Using nearest neighbour analysis, we found male distribution tends to uniformity in forest habitats, but in the RF, male distribution is more random. Males also showed preference for high singing sites and these were correlated with host plant height. Although host plants in DF were taller than those in the RF, male’s perch preference was independent from the habitat; and in RF, males select lower perches. To investigate if male spacing was a function of the calling song, we manipulated two groups of males from a different population, one group deafened (tympanic membranes torn), and another control group with tympanic membranes intact. Insects were released from a single location in the two different zones of similar area. After a number of days we measured male displacement, and found that the deafened group distribution tended to aggregation, while the control group spread throughout the experimental zone with a random distribution. These results suggest that male spacing behaviour is one of the functions of the calling song. Based on a pre‐established phylogenetic framework of the genus Panacanthus, we discuss some implications for the evolution of the calling song of P. pallicornis in both RF and DF.  相似文献   

2.
A new diatom (Bacillariophyceae) genus and two new species are described from the arid region of the North American southwest. The new genus, Playaensis, and new species, P. circumfimbria and P. furtiva, are distinguished by frustule morphology and autecology. Playaensis possesses unique, narrowly lunate longitudinal ribs bordering the raphe and spathulate spines, but their evolutionary relationship to known genera is unclear. In Payton Lake, New Mexico, P. circumfimbria and P. furtiva are rare in the diatom community, and their geographic and geological extent are not known, but they may be restricted to alkaline, slightly saline lakes of the region.  相似文献   

3.
Several prominent evolutionary theories propose mechanisms whereby the evolution of a defensive trait or suite of traits causes significant shifts in species diversification rate and niche evolution. We investigate the role of cuticular spines, a highly variable morphological defensive trait in the hyperdiverse ant genus Polyrhachis, on species diversification and geographic range size. Informed by key innovation theory and the escape-and-radiate hypothesis, we predicted that clades with longer spines would exhibit elevated rates of diversification and larger range sizes compared to clades with shorter spines. To address these predictions, we estimated phylogenetic relationships with a phylogenomic approach utilizing ultraconserved elements and compiled morphological and biogeographic trait databases. In contrast to the first prediction, we found no association between diversification rate and any trait (spine length, body size and range size), with the sole exception of a positive association between range size and diversification in one of three trait-based diversification analyses. However, we recovered a positive phylogenetic correlation between spine length and geographic range size, suggesting that spines promote expanded geographic range. Notably, these results were consistent across analyses using different phylogenetic inference approaches and spine trait measurement schemes. This study provides a rare investigation of the role of a defensive trait on geographic range size, and ultimately supports the hypothesis that defensive spines are a factor in increased range size in Polyrhachis ants. Furthermore, the lack of support for an association between spines and diversification, which contrasts with previous work demonstrating a positive association between spines and diversification rate, is intriguing and warrants further study.  相似文献   

4.
5.
ABSTRACT. Survival of a potential prey organism depends on the effectiveness of its physical, chemical, behavioral and life history responses to the appearance of a predator. Inducible defenses are flexible responses in which predator (or competitor)-released substances stimulate potential prey organisms to transform into predator-resistant phenotypes. Induced defenses may be highly protective. Benefits however are often balanced by fitness costs such as decreased growth rates or reduced reproductive potential. Here I discuss inducible defenses in ciliates with particular attention to the hypotrich genera: Aspidisca, Euplotes, Onychodromus, Sterkiella, and an undescribed hypotrich genus. I isolated Sterkiella sp. and the undescribed genus from vernal woodland pools on Saint Anselm College campus. Experimental evidence shows that a signal-induced defensive transformation occurs in these ciliates within hours after exposure to a predator cue and results in a significant decrease in susceptibility to predation. Deployment of ciliate antipredator structures such as spines, keels, ridges and other protuberances requires a large investment of cytoskeletal elements, primarily microtubules, and incurs an evolutionary cost in the form of significantly reduced growth rates. Onychodromus quadricornutus exhibits an extraordinary degree of phenotypic plasticity. In response to different environmental conditions individuals within a clone may express one of three general phenotypes: basic, lanceolate, or giant cells. The predacious giant phenotype releases a morphogenetically active signal substance, Onychodromus-factor, that triggers defensive phenotypic transformation in both intraspecific and interspecific prey. Enzyme degradation and ultrafiltration experiments indicate that Onychodromus-factor is a peptide with a molecular weight below 10,000 Da. Conspecifics develop hypertrophied dorsal spines when exposed to Onychodromus-factor. Sterkiella cells develop two defensive dorsal keels and transform to an enlarged ovoid cell in response to Onychodromus-factor as well as inducing signals released by Stylonychia, Urosyla, and Lembadion. Field studies of two vernal pools show that defensive phenotypic transformation in Sterkiella cells coincides with the appearance of Lembadion magnum during vernal pool succession. An undescribed hypotrich genus also expresses its defended phenotype when Lembadion is present in these pools. Aspidisca turrita (Ehrenberg, 1838) Claparede and Lachmann 1858, closely resembles Aspidisca lynceus (Müller, 1773) except for the possession of a dorsal thorn-like structure. Experimental evidence shows that the dorsal thron is a defensive structure induced by signals released by the predacious ciliates Urostyla grandis and Lembadion magnum. Thus, A. turrita and A. lynceus are alternate phenotypes of the same species. I speculate that inducing signals function in predacious ciliates as lectin-like, carbohydrate-binding adhesion proteins during prey recognition and that prey species have evolved specialized cell surface receptors that allow detection of different predator proteins. I consider consequences for both predator and prey.  相似文献   

6.
In this paper, we reassess the status of the two genera of scaled Entomobryinae with dental spines (Acanthocyrtus and Acanthurella) and we erect a new genus ( Sinhomidia ) on the basis of scale morphology and scale distribution. Scales are partially pointed in Acanthocyrtus and all rounded in Acanthurella. The new genus, Sinhomidia , has pointed scales, but lacks dental scales contrary to Acanthurella and Acanthocyrtus; in addition, it exhibits a unique dorsal macrochaetotaxy. Three new species of Acanthocyrtus are described ( Acanthocyrtus yolngui sp. nov. , Acanthocyrtus loftyensis sp. nov. , Acanthocyrtus barrowensis sp. nov. ) and two are redescribed [Acanthocyrtus spinosus (Schött, 1917), Acanthocyrtus lineatus Womersley, 1934]. One species (Acanthocyrtus bicolor Yosii, 1965 ) of the genus is redescribed and transferred to the new genus Sinhomidia . A key to the scaled Entomobryinae genera with dental spines and a key to the eight known Acanthocyrtus species are provided. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157 , 495–514.  相似文献   

7.
A survey of pollen morphology in 20 species representing the 11 genera of the North American subtribe Stephanomeriinae by light, scanning electron, and transmission electron microscopy revealed 10 of the 11 genera to have echinate, tricolporate pollen grains, Lygodesmia being the only genus with echinolophate pollen. Sectioned exines of most of the species examined are similar, being composed of ektexine and endexine. The ektexine surface is composed of spines which typically have globose perforate bases. A cavus occurs as a separation between the basis (foot layer) and the columellae in all of the genera examined except Chaetadelpha. Pollen of the two species of Glyptopleura were found to be strikingly different in exomorphology. Pollen of the putatively self-fertile G. marginata has much shorter spines than the closely related G. setulosa. Atrichoseris, Anisocoma, Calycoseris, Glyptopleura, Pinaropappus, Prenanthella, and most species of Malacothrix have pollen which lack paraporal ridges. The remaining genera, Chaetadelpha, Lygodesmia, Rafinesquia, and Stephanomeria have well-developed ridges of fused spine bases around the apertures. Pollen characters, particularly those of the aperture region, have been found to be systematically useful in the subtribe, therefore acetolyzed material gives more useful information than untreated pollen.  相似文献   

8.
Despite the long popularity of Charaxes among collectors and researchers, their evolutionary history is largely unknown. The current and accepted species groupings and relationships within the genus are based exclusively on adult morphology and life histories. Here, we examine the monophyly and evolutionary affinities of the species-groups within the genus Charaxes and explore how they relate to members of their closest genera (Euxanthe, Polyura and Palla) using 4167 bp of sequence data from five (1 mitochondrial and 4 nuclear) gene regions. Within the proposed phylogenetic framework, we estimate ages of divergence within the genus and also reconstruct their historical biogeography. We included representatives of all known species-groups in Africa and Asia, all known species of Euxanthe and Palla and two exemplar species of Polyura. We found the genus Charaxes to be a paraphyletic group with regard to the genera Polyura and Euxanthe, contrary to the earlier assumption of monophyly. We found that 13 out of 16 morphologically defined species-groups with more than one species were strongly supported monophyletic clades. Charaxes nichetes is the sister group to all the other Charaxes. Polyura grouped with the Zoolina and Pleione species-groups as a well-supported clade, and Euxanthe grouped with the Lycurgus species-group. Our results indicated that the common ancestor of Charaxes diverged from the common ancestor of Palla in the mid Eocene (45 million years ago) in (Central) Africa and began diversifying to its extant members 15 million years later. Most of the major diversifications within the genus occurred between the late Oligocene and Miocene when the global climates were putatively undergoing drastic fluctuations. A considerable number of extant species diverged from sister species during the Pliocene. A dispersal–vicariance analysis suggests that many dispersal rather than vicariance events resulted in the distribution of the extant species. The genus Polyura and the Indo-Australian Charaxes are most likely the results of three independent colonizations of Asia by African Charaxes in the Miocene. We synonymize the genera Polyura (syn. nov.) and Euxanthe (syn. nov.) with Charaxes, with the currently circumscribed Charaxes subdivided into five subgenera to reflect its phylogeny.  相似文献   

9.
The acropomatid, Amia (Amioides) grossidens Smith and Radcliffe 1922, was originally described from a single specimen collected off Luzon Island, the Philippines. Although this species was regarded as belonging to Synagrops, it is distinguished from Synagrops by the dentition of the upper jaw, number of dorsal fin spines, and additionally from other acropomatid genera by 14 caudal vertebrae and a posttemporal spine. Therefore, this species should be placed in a monotypic genus Amioides, with elevation of the subgenus to generic rank, compared with diagnostic characters of seven other genera, and this genus and species were herein redescribed based on the holotype.  相似文献   

10.
Recent questions concerning the taxonomic status of the diatom genus Gomphoneis Cleve have prompted critical examination of the valvar morphology of a species originally included in the genus. Light and electron microscopic observations on G. mammilla (Ehr.) Cl. show that the characteristics put forth by Cleve to delineate the genus are present in this taxon. Striae composed of two rows of simple areolae located in depressions on the valve and longitudinal lines formed by a broad internal axial plate were observed in G. mammilla. The presence of two apical spines on the headpole and the structure of a bilobed apical pore field located at the footpole are described, in addition to other valve features. Valve morphology of G. mammilla is compared with that of doubly-punctate Gomphonema species with the result that we recommend the two genera remain separate.  相似文献   

11.
A key focus of ecologists is explaining the origin and maintenance of morphological diversity and its association with ecological success. We investigate potential benefits and costs of a common and varied morphological trait, cuticular spines, for foraging behavior, interspecific competition, and predator–prey interactions in naturally co‐occurring spiny ants (Hymenoptera: Formicidae: Polyrhachis) in an experimental setting. We expect that a defensive trait like spines might be associated with more conspicuous foraging, a greater number of workers sent out to forage, and potentially increased competitive ability. Alternatively, consistent with the ecological trade‐off hypothesis, we expect that investment in spines for antipredator defense might be negatively correlated with these other ecological traits. We find little evidence for any costs to ecological traits, instead finding that species with longer spines either outperform or do not differ from species with shorter spines for all tested metrics, including resource discovery rate and foraging effort as well as competitive ability and antipredator defense. Spines appear to confer broad antipredator benefits and serve as a form of defense with undetectable costs to key ecological abilities like resource foraging and competitive ability, providing an explanation for both the ecological success of the study genus and the large number of evolutionary origins of this trait across all ants. This study also provides a rare quantitative empirical test of ecological effects related to a morphological trait in ants.  相似文献   

12.
Seven craniide brachiopod genera are described from the Silurian (Wenlock–Ludlow) of Gotland, including one new genus and five new species. The new genus and species Thulecrania septicostata is unique among Silurian craniides as it possesses solid spines. The new species Lepidocrania multilamellosa is the first Silurian record of this poorly known Permian genus. The problematic North American Propatella Grubbs, 1939 , was originally described as a gastropod, but the new species Propatella palmaria from Gotland shows that it is a craniide with sutured hollow spines of a type not previously recorded from Silurian craniides. The dorsal valves of the new species Valdiviathyris? bicornis are remarkably similar to those of the type species and represent the first possible Palaeozoic record of this poorly known extant craniide. This first systematic study of craniide brachiopods from the Silurian of Gotland shows that the diversity is relatively high as compared to other known Silurian craniide faunas, but a more thorough comparison is not possible due to the lack of data from most parts of the world. The new data from Gotland support the view that the craniides were not affected by the end‐Ordovician extinction.  相似文献   

13.
Floral microcharacters of the genus Chrysolaena H. Rob. (Vernonieae, Asteraceae) were analysed in detail for the first time in order to evaluate the taxonomic position of conflictive species in the group. The results were also compared with studies carried out in species of related genera. In addition to distinctive microcharacters previously studied in some species of the genus, other characters such as trichome types of the corolla, style, anthers and cypselae have been analysed for the first time. The presence of glandular apical appendage and cypselae are common characteristics among species Chrysolaena. In addition to these, this study shows that presence of glands on the style and corollas is another consistent characteristic in the genus. However, the absence of basal stylar node would not be a diagnostic character since this varies widely among species. The results indicate that most of the microcharacters of Chrysolaena analysed are quite consistent in the genus, but they are no more consistent than the pollen morphology (type 'C') and chromosome base number (x = 10). Until now, these last two features would be most useful for separating Chrysolaena from the related genera Lessingianthus and Lepidaploa. At species level, the results show that related species can be distinguished by the different combinations of floral microcharacters. The value of microcharacters could be increased if they are combined with other morphological, cytological, and palynological data.  相似文献   

14.
The asidine darkling beetles (Coleoptera: Tenebrionidae: Asidini) are a diverse tribe of flightless tenebrionids found in many arid and sub‐arid habitats around the world. The 263 currently described North American species are contained in ten genera, all of which are restricted to the western half of the continent. The Asidini, like all members of the subfamily Pimeliinae, lack defensive glands. Instead, several phenotypic traits occur within the tribe that may help limit predation. These include the contrasting defensive strategies of crypsis, through either background matching or pattern disruption, and Batesian mimicry of the chemically defended genus Eleodes. Dorsal elytral morphology was assessed between 53 North American asidine species and 13 common Eleodes model species using multiple methodologies to assess similarities between species in the two groups that might indicate mimetic relationships. A phylogeny of the North American asidines is used to map the occurrence of differing defensive strategies within the tribe. Crypsis is reconstructed as the ancestral state, with two origins for Batesian mimicry and multiple reversals. The combination of strongly to weakly cryptic species and varying levels of mimetic fidelity to Eleodes model species make the asidines a promising lineage upon which to further explore the evolution of defensive phenotypes.  相似文献   

15.
A total of 56 morphological characters were analyzed for 53 cirrospiline species that represent all of the 17 described genera of the tribe. The other taxa of the Eulophinae included in the analysis were six species of six representative genera in the tribe Eulophini, a species of Elasmus (the only genus comprising the tribe Elasmini), and a species of Trichospilus (unplaced). Trichospilus and two of the six genera of Eulophini examined were placed within Cirrospilini. Monophyly of Cirrospilini (when these two genera of Eulophini and Trichospilus are included) and of the cirrospiline genera for which more than one species were examined was supported, but the relationships between the genera were poorly resolved. An exception was Cirrospilus, the largest genus in the Cirrospilini, monophyly of which was not supported to any extent.  相似文献   

16.
A phylogenetic analysis based on 58 morphological characters including 18 species representing 14 genera over the 15 currently known in Darnini (Hemiptera: Membracidae) confirms the monophyly of this tribe. This result is particularly supported by the presence of cucullate setae on the ventral side of the femora. Two sister clades are inferred: the clade Funkhouseriana+ which groups four genera (Aspona, Cyphotes, Funkhouseriana, Taunaya) and exhibits a ‘bird dropping’ habitus and all other genera which exhibit a ‘dewdrop’ like habitus (Alobia, Darnis, Dectonura, Hebetica, Hebeticoides, Leptosticta, Ochrolomia, Stictopelta) or a ‘thorny’ habitus (Alcmeone, Sundarion). In the ‘dewdrop’ habitus, only the clade Ochrolomia+ is retained as a monophyletic unit. According to these results, pronotal shapes and habitus have evolved independently in each monophyletic unit and each one seems correlated with a particular type of mimicry strategy. According to the strategy, characters involved are different, a priori independent; moreover, they look coordinated regarding to the mimicry function they serve. The various evolutionary scenarios are discussed in relation to the phylogeny, and particularly in correlation with the non-gregarious behavior of these membracids, also coherent with their mimicry strategy.  相似文献   

17.
Örjan Nilsson 《Grana》2013,52(2-3):279-363
The pollen morphology of several genera in Portulacaceae is described. Particular attention has been paid to the genera of the subfamily Montioideae, as a stage of continued monographical studies. Among genera especially dealt with are Claytonia, Montia, Crunocallis, Naiocrene, Neopaxia, Mona, Maxia, Limnalsine, and Montiastrum. In the taxonomical treatment of these genera the pollen morphology has proved to afford many important additional characters.

The pollen grains of Claytonia are distinguished from those of the remainder in being 3-colpate. The grains of the Claytonia-type have many similarities with those of Lewisia, a genus of the subfamily Portulacoideae. The other genera of Montioideae have pantocolpate pollen grains. Among these genera several different pollen types are distinguished, chiefly with regard to the sexine structures and the aperture membranes. The Montiastrum-type is especially interesting, with tholate grains, a particular pollen type not met with in any other genus in the family. The pollen morphology of some genera in the Portulacoideae is also treated. In some species in Calandrina and Talinum pantotreme pollen grains are observed with apertures transitional between pori and colpi. The apertures of the pantotreme grains are arranged in characteristic patterns.

Particular attention has been given to the variation of the pollen morphological characters. This variation has been examined with regard to the differences between different populations of the same species as well as between different species. The greatest variation has been observed in the shape and size of the grains. The structure and sculpture and thickness of the sexine and the aperture membranes are less variable. Some polyploid taxa are connected with the occurrence of pollen grains with divergent and varying aperture numbers.

In a survey of the genera the taxonomical results of the investigation are presented with particular regard to the pollen morphology. The new genus, Maxia Ö. Nilss., is described. One new species, Montia clara Ö. Nilss., is described and some new combinations are made.

Pollen morphological diagnoses are given for 46 different taxa. The aperture conditions for 96 different species are presented.  相似文献   

18.
Taxonomic complexity has hindered partitioning the genusCentaurea into natural subdivisions, even though it has long been recognized as an unwieldy, artificial assemblage. Most of the remaining difficulties center in theCentaurea jacea group, whose taxa share a common advanced type of pollen. Because it comprises half the species of the genusCentaurea, as well as five other disputed genera previously segregated fromCentaurea (Chartolepis, Cheirolepis, Cnicus, Grossheimia andTomanthea), theCentaurea jacea group is a significant taxonomic challenge. Newer molecular approaches are useful for resolving complex relationships because they provide more precise inferences of evolutionary relationships than traditional morphological characters. Sequences of the Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA were analyzed for a comprehensive sample of this group. Results indicated that theCentaurea jacea group is monophyletic and includes the segregated genera, but not two other genera (Oligochaeta andZoegea), whose inclusion in theCentaurea jacea group was doubtful. In addition to pollen morphology, the ITS phylogeny is also supported by karyological evidence and by good correlation with biogeographic distribution of the species. The monophyly of theCentaurea jacea group suggests that a natural delimitation ofCentaurea that minimizes nomenclatural changes is possible, but only if a new type of the genus is designated.  相似文献   

19.
20.
Abstract. The spine morphology of all established species of Diadema and Echinothrix, including 2 color morphs of E. calamaris, were examined externally and internally via transverse sectioning to identify diagnostic species features and to assess the morphological relationship between species. Forty‐nine different morphological characters were measured and analysed using ordination by multi‐dimensional scaling (MDS) and cluster analysis. Specimens of Diadema paucispinum and D. setosum had very distinct spine structures. In D. paucispinum, the spines were more robust than those of other species of Diadema. This was evident in the spine's internal structure, with large, closely packed solid wedges, a small axial cavity, and rings of trabeculae throughout the spine's length. The spines in D. setosum were distinctive because of their length in relation to test size and the reduced flaring of their verticillations. The spines of other members of this genus were very similar to each other. Without careful sectioning, the spines from specimens of D. antillarum, D. ascensionis, D. mexicanum and D. savignyi were difficult to differentiate. The internal structures of spines for each species did, however, possess a combination of features that differentiated the species. Such features included the shape, orientation, and number of solid wedges, the presence or absence of spokes and rings of trabeculae between the solid wedges, and the presence or absence of tissue within the axial cavity. Individuals of Diadema palmeri also had spines morphologically similar to other species, however, the red pigmentation of these spines (in life and when preserved) made them easily distinguishable. The spine structures of the 2 species of Echinothrix were starkly different, while the white and brown color morphs of E. calamaris had morphologically distinctive ambulacral and interambulacral spines. The blunt, open‐tipped interambulacral spines, with reticular tissue present in the axial cavity of the white color morph, were easily distinguished from the pointed, closed‐tipped spines, with a hollow axial cavity found in the brown color morph. Such differences indicate that the brown color morph is either a subspecies or a separate species. Taken together the data show that each species has significant morphological differences in the structure of the spines. It is evident from our data that spine morphology is a useful tool to differentiate these commonly confused species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号