首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the peripheral chemoreceptors in the control of fetal breathing movements has not been fully defined. To determine whether denervation of the peripheral chemoreceptors affects fetal breathing movements, we studied 14 chronically catheterized fetal sheep from 120 to 138 days of gestation. In seven fetuses the chemoreceptors were denervated by bilateral section of the vagus and carotid sinus nerves; in seven others, sham operations were performed. We compared several variables during two study periods: 0-5 and 6-13 days after operation. In the denervated fetuses there were significant decreases in the incidence and amplitude of fetal breathing movements during both study periods. There were no differences between the two groups in incidence of low-voltage electrocortical activity, arterial pH and blood gas tensions, fetal heart rate, mean arterial blood pressure, or duration of survival after operation or birth weight. We conclude that denervation of the peripheral chemoreceptors decreases fetal breathing movements. These results indicate that the peripheral chemoreceptors are active during fetal life and participate in the control of fetal breathing movements.  相似文献   

2.
In order to investigate possible mechanisms for the effect of hypoxia on fetal electrocortical (ECoG) activity, the effects of 30 min of isocapnic hypoxia on ECoG were studied in three groups of unanaesthetized late-gestation fetal lambs in utero. One group was intact, in the second the brainstem was transected between the colliculi, and in the third the carotid sinus nerves and cervical vagosympathetic trunks were cut bilaterally to denervate the systemic arterial chemoreceptors. The incidence of high voltage (HV) ECoG activity was lower in brainstem-transected fetuses than in the other groups. All three groups showed an increased number of changes from low to high voltage and an increase in the incidence of HV activity at the onset of hypoxia, but the increases reached statistical significance only in the brainstem-transected group. It is concluded that the onset of hypoxia is often associated with an increase in HV ECoG activity, with the most consistent changes occurring after brainstem transection and similar but smaller increases in intact and denervated fetuses. Thus the response of fetal electrocortical activity to the onset of hypoxia does not depend on intact connections with the lower brainstem. However, the effect of hypoxia on fetal ECoG is minor and inconsistent and may be physiologically unimportant.  相似文献   

3.
In sheep, prostaglandin (PG) E2 inhibits fetal breathing movements and meclofenamate, a PG synthetase inhibitor, causes a marked stimulation of fetal breathing movements; the site of action of these agents is not known. To determine whether these effects are mediated through the peripheral chemoreceptors, we studied 13 fetal sheep at gestational ages of 127 to 138 days. Seven fetuses had bilateral section of the carotid sinus and vagus nerves (denervated); six had sham operations. Beginning at least 6 days after the operation, we infused PGE2 (0.6 microgram X kg-1 X min-1) into five denervated and five sham-operated fetuses and meclofenamate (0.4 mg X kg-1 X h-1) into six denervated and four sham-operated fetuses. Infusions averaged 20 h in duration. During preinfusion control periods, the incidence of fetal breathing movements (% of time) was lower in denervated than in sham-operated fetuses (18.9% vs. 31.5%; P less than 0.005). In both groups, the incidence of fetal breathing movements was decreased by PGE2 and was increased by meclofenamate; when expressed as absolute values, the magnitude of the changes with both agents was greater in sham-operated fetuses than denervated fetuses. However, the effects were similar in both groups when the changes were expressed as a percent of the respective control values. The incidence of fetal breathing movements (% of control) was decreased by PGE2 to 25.4% in denervated and to 28.2% in sham-operated fetuses and was increased by meclofenamate to 297.3% in denervated and to 304.0% in sham-operated fetuses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Breathing responses to adenosine were determined in 12 chronically catheterized fetal sheep (greater than 0.8 term) in which hypoxic inhibition of breathing had been eliminated by brain stem section. The caudal extent of transection varied from the rostral midbrain to the pontomedullary junction. Isocapnic hypoxia [delta arterial PO2 (PaO2) of -12 Torr] doubled the incidence and depth of breathing activity and increased the incidence of eye movements. Intra-arterial infusion of adenosine (0.30 +/- 0.03 mg.min-1.kg fetal wt-1) increased the incidence and amplitude of breathing without affecting blood gases. Adenosine did not significantly alter the incidence of eye activity. Intra-arterial injection of oligomycin (120 +/- 26 micrograms/kg fetal wt), an inhibitor of mitochondrial oxidative phosphorylation, also stimulated breathing activity. In four fetuses with brain stem section, peripheral arterial chemodenervation blunted the stimulatory effects of hypoxia on breathing activity and abolished altogether the excitatory effects of adenosine. It is concluded that 1) hypoxia and adenosine likely inhibit breathing in normal fetuses by affecting similar areas of the brain stem and 2) in fetuses with brain section, hypoxic hyperpnea depends on peripheral and central mechanisms, whereas adenosine stimulates breathing via the peripheral arterial chemoreceptors.  相似文献   

5.
Whilst hypoxia stimulates fetal peripheral chemoreceptors, fetal breathing movements do not increase as hypoxia also has central effects. We wondered whether specific stimulation of the arterial chemoreceptors by almitrine would produce a stimulation of fetal breathing movements. When almitrine was given to 5 intact and 3 peripherally-chemodenervated fetal sheep in utero, fetal breathing movements rapidly ceased for 1-12 h. There was also a decrease in the amount of time spent in low voltage electrocortical activity. The effects of almitrine are therefore similar to those of hypoxia, and are independent of the peripheral chemoreceptors. Thus it may be a valuable tool in the study of the control of fetal breathing.  相似文献   

6.
In fetal sheep acute hypoxia causes a decreased incidence of breathing movements and motor activity, and the excitability of polysynaptic reflexes in the hindlimbs is depressed. To determine whether this inhibitory effect extends to other areas in the fetal CNS, we have studied the effect of hypoxia on two reflexes with cranial pathways. The digastric (jaw opening) reflex was elicited by stimulation of the dental nerve through a pair of stainless steel electrodes implanted into the mandible (4 fetuses). The thyroarytenoid muscle of the larynx was reflexly activated by stimulation of the superior laryngeal nerve by a cuff electrode (4 fetuses). Low level stimulation at 1.5-2 X threshold was repeated at approximately 2 min intervals for 3-4 h; the stimulation did not alter the pattern of electrocortical activity, breathing movements, or cause arousal. The amplitude of the digastric reflex was greatest during low voltage electrocortical activity; conversely, the amplitude of the thyroarytenoid reflex was greatest during high voltage electrocortical activity. Isocapnic hypoxia lasting 30-60 min (16 trials), in which the PaO2 was reduced to 12-14 mmHg, did not reduce the amplitude of either reflex. The reduction of thyroarytenoid reflex amplitude which normally occurred during low voltage electrocortical activity was not present during hypoxia. These experiments show that the inhibitory effects of hypoxia on spinal reflexes, breathing movements and motor activity do not include these cranial pathways.  相似文献   

7.
The role of the systemic arterial chemoreceptors in regulating breathing movements was determined in 7 chronically catheterized fetal sheep with carotid denervation and vagal section. Fetal hypoxaemia (delta PaO2 = -11.4 +/- 0.6 mmHg) decreased significantly the incidence of rapid-eye-movements (control = 26 +/- 1.5 min/h; hypoxia = 12 +/- 2.6 min/h, P less than 0.001) and breathing activity (control = 18 +/- 1.0 min/h; hypoxia = 8 +/- 1.1 min/h, P less than 0.001). However, the lag in onset of inhibition (approximately 8 min) was significantly greater (P less than 0.05) than for normal fetuses. The incidence of low voltage electrocortical activity was not affected. Hypercapnia (delta PaCO2 = 9.5 +/- 1.1 mmHg) increased significantly the incidence of rapid-eye-movements and breathing activity. Hypercapnia also increased the mean amplitude of breathing activity and reduced the average breath interval. Rapid-eye-movements and breathing activity were depressed significantly by hypoxaemic hypercapnia. These observations suggest that hypoxic inhibition does not require afferent activity from the aortic or carotid bodies nor from other chemoreflexes mediated by the vagus. However, such peripheral input may be responsible for a more rapid onset of inhibition in normal fetuses.  相似文献   

8.
Role of plasma adenosine in breathing responses to hypoxia in fetal sheep.   总被引:2,自引:0,他引:2  
The importance of plasma adenosine in hypoxic inhibition of breathing movements was determined in chronically catheterized fetal sheep (greater than 0.8 term). Preductal arterial blood for adenosine measurements was withdrawn using a double lumen catheter to mix blood entering the catheter with a solution to stop adenosine metabolism. In 6 fetuses, isocapnic hypoxia (delta PaO2 congruent to -10 Torr) increased the average plasma adenosine concentration from 1.1 +/- 0.2 (SEM) to 2.0 to +/- 0.4 microM. During hypoxia, plasma levels of adenosine were inversely related to preductal arterial O2 content (CaO2) with values ranging between 1.6 and 4.0 microM when CaO2 was less than 3 ml/dl. Hypoxia also significantly reduced the incidence of fetal breathing and rapid eye movements. In other experiments, adenosine (0.36 +/- 0.03 mg/min/kg) was infused for one hour into the inferior vena cava of 5 fetuses. During this infusion, mean plasma concentration of adenosine was 2.8 +/- 0.3 microM, a value about 2.5 times the control average. Adenosine also significantly reduced the incidence of low voltage electrocortical activity, rapid eye movements and breathing activity. We conclude that hypoxic inhibition of fetal breathing most likely arises from an increase in central adenosine production, although during severe O2 deprivation (CaO2 less than 3 ml/dl) blood-borne adenosine could also contribute.  相似文献   

9.
The fetal respiratory and electrocortical effects of 0.6 microgram to 600 micrograms of morphine, administered into the lateral cerebral ventricle, have been studied in chronically catheterised, unanaesthetized fetal sheep at 115-135 days gestation. Morphine at 0.6 microgram had no effect on breathing movements or electrocorticographic activity, and at 6 micrograms induced a period of apnoea (43-122 min) but had no effect on electrocortical activity. Intravenous naloxone (2 mg bolus and infusion of 2 mg/kg/h for 2 h) to the fetus had no effect on this apnoea. Morphine at 60 micrograms induced an initial period of apnoea (30-65 min) followed by episodic but significantly deep breathing movements with no effect on electrocortical activity and at 600 micrograms induced an initial period of apnoea (22-95 min) which was followed by deep, irregular and continuous (126-302 min) breathing movements. During the apnoea electrocortical activity initially remained cyclic, but as apnoea progressed there was a gradual reduction in the voltage of the electrocorticogram to a low voltage state. Intravenous naloxone (2 mg bolus and infusion of 2 mg/kg/h for 2 h) reversed both the respiratory and electrocortical effects. The hyperventilation was also inhibited by hypoxia. Naloxone alone had no effect on fetal breathing activity.  相似文献   

10.
Prenatal lung development requires fetal breathing movements (FBM). To investigate the dependence of FBM on feedback originating from the lung, we hypothesized that pneumonectomy stimulates FBM. Time-dated fetal sheep underwent bilateral pneumonectomy, unilateral pneumonectomy, or sham surgery at 125-130 days gestation. The incidence of FBM decreased in sham-operated fetuses at 142 days versus 130 days (p = 0.013), but was unchanged across all gestational ages in bilaterally pneumonectomized fetuses (p > or = 0.52). In unilaterally pneumonectomized fetuses, the incidence of FBM remained unchanged until 139 days and was higher than that of the bilaterally pneumonectomized fetuses at 130-136 days gestation (p < or = 0.03). The amplitude of integrated diaphragmatic electromyographic activity (integralEMG(di)) and total respiratory output (frequency of breathing x integralEMG(di)) were lower in pneumonectomized fetuses versus sham-operated fetuses at later gestational ages (p < 0.05). These decreases in integralEMG(di) and total respiratory output were most pronounced at 142 days in bilaterally pneumonectomized fetuses versus sham-operated fetuses (p = 0.006 and 0.016, respectively). Low-voltage electrocortical activity (ECoG) increased, and high-voltage ECoG decreased, in unilaterally pneumonectomized fetuses compared with sham-operated fetuses (p = 0.04). In conclusion, we provide new evidence that feedback from the fetal lung modulates the incidence and various components of phrenic nerve output, suggesting a positive feedback mechanism between FBM and lung development.  相似文献   

11.
The possibility that adenosine mediates hypoxic inhibition of fetal breathing and eye movements was tested in nine chronically catheterized fetal sheep (0.8 term). Intracarotid infusion of adenosine (0.25 +/- 0.03 mg.min-1.kg-1) for 1 h to the fetus increased heart rate and hemoglobin concentration but did not significantly affect mean arterial pressure or blood gases. As with hypoxia, adenosine decreased the incidence of rapid eye movements by 55% and the incidence of breathing by 77% without significantly affecting the incidence of low-voltage electrocortical activity. However, with longer (9 h) administration, the incidence of breathing and eye movements returned to normal during the adenosine infusion. Intravenous infusion of theophylline, an adenosine receptor antagonist, prevented most of the reduction in the incidence of breathing and eye movements normally seen during severe hypoxia (delta arterial PO2 = -10 Torr). It is concluded that 1) adenosine likely depresses fetal breathing and eye movements during hypoxia and 2) downregulation of adenosine receptors may contribute to the adaptation of breathing and eye movements during prolonged hypoxia.  相似文献   

12.
Extra-dural or cerebroventricular intracranial pressure was measured in 7 unanaesthetized fetal sheep (123-137 days gestation). Basal intracranial pressure was 6.7 +/- 1.7 mmHg, but there were many transient increases of pressure in association with spontaneous changes of amniotic pressure, fetal intrathoracic pressure, and particularly when the fetal nuchal muscles were active. These spontaneous increases of intracranial pressure were often associated with cessation of breathing movements and change of the electrocorticogram from low to high voltage activity. To test whether increased intracranial pressure influenced breathing movements and electrocortical activity, intracranial pressure was raised either by occluding the superior vena cava for 1 min with an implanted extravascular cuff, or by extra-dural injection of 0.3-1.0 ml of 0.9% NaCl. Increasing the intracranial pressure 5-15 mmHg by either method during low voltage electrocortical activity caused cessation of breathing movements, electro-ocular activity, and change of the electrocorticogram from low to high voltage in a significant proportion of trials. We propose that natural fluctuations of intracranial pressure caused by compression of the fetal body or skull, by body movements or by uterine activity, may cause changes in electrocortical activity and breathing movements.  相似文献   

13.
Isocapnic hypoxaemia (delta PaO2 = -8.0 +/- 0.5 mmHg; delta CaO2 = -2.86 +/- 0.20 ml/dl) was produced in fetal sheep by having the ewe breathe for one hour a gas mixture (v/v) of 10.5% O2 and 1.5% CO2 in N2. Mean fetal heart rate, blood pressure, and incidence of low voltage electrocortical activity were not affected. However, the incidence of rapid-eye-movements and breathing activity was reduced by about 40%. Breathing movements during hypoxaemia had a mean inspiratory time, breath interval, and tracheal pressure amplitude which did not differ significantly from those during control experiments in which the ewe breathed air from the plastic bag. These observations suggest that hypoxia decreases the incidence of breathing movements but does not affect the amplitude or pattern of breathing activity and that it may reduce the incidence of eye movements and breathing activity through a common mechanism.  相似文献   

14.
Continuous infusions of naloxone HC1 (0.5 mg/kg or 3.8 mg/kg) or saline were given intravenously to fetal sheep at 119 to 137 days of gestation during a one hour period of air administration and a one hour period of hypoxia induced by having ewes breathe 9% O2, 3% CO2 and 88% N2. Fetal carotid PaO2 fell to 13.0 +/- 0.5 mmHg during hypoxia with no change in pH. During hypoxia, plasma cortisol concentration increased significantly more in naloxone-infused fetuses than controls. Ewes, whose fetuses received naloxone, showed a significant increase in cortisol during hypoxia whereas no increase was observed in controls. There were no significant differences between saline and naloxone-infused fetuses during hypoxia in fetal breathing incidence, amplitude, frequency, number of deep inspiratory efforts per hour, heart rate, electrocortical activity or in the rise in plasma glucose caused by hypoxia. Results suggest that endogenous opiates may have a role in modulating cortisol production in the ewe and fetus during hypoxia but do not have a role in mediating the decrease in incidence of breathing activity or rise in plasma glucose. During air administration, naloxone significantly increased fetal breath amplitude, fetal and maternal plasma glucose, fetal heart rate, and the number of electrocortical changes per hour. This suggests endogenous opiates may have a more important role in the normoxic pregnant ewe and fetus.  相似文献   

15.
The functional development of two upper airway dilating muscles, the alae nasi and the genioglossus, has been studied in fetal sheep in utero from 112-140 days gestation. Before electrocortical differentiation phasic activity was present in both muscles for long periods, mostly when breathing movements were present. After 120 days gestation phasic genioglossal and alae nasi activity occurred only during periods of low voltage electrocortical activity. During high voltage episodes there was no phasic activity and tonic activity was not sustained. Although present during periods of breathing movements genioglossus activity was rarely synchronous with the diaphragm. The alae nasi showed both respiratory and non-respiratory related activity. Hypoxia abolished both alae nasi and genioglossus activity but whereas alae nasi rapidly developed an inspiratory rhythm during 5% CO2 administration this was not the case with the genioglossus and inspiratory activity was not always seen in the genioglossus even during 10% CO2 administration. It is concluded that there are fundamental differences between the control of genioglossus and alae nasi activity in the fetal sheep. The alae nasi behaves as an inspiratory muscle responding to hypoxia and hypercapnia as would be expected but the genioglossus shows no inspiratory activity during normal unstimulated fetal breathing. Thus the neural mechanisms for activation of inspiratory activity appear to be present late in gestation. However it is possible for the genioglossus to develop an inspiratory rhythm under conditions of much increased respiratory drive.  相似文献   

16.
To investigate the effects of bilateral cervical vagotomy on arousal and breathing responses, we studied eight sham-operated and eight chronically instrumented unanesthetized vagotomized sheep fetuses between 136 and 144 days of gestation (term approximately 147 days). Each fetus was instrumented to record sleep states, diaphragmatic electromyogram, blood pressure, pH, and blood gas tensions. In a randomized order, fetal lungs were distended with four different O2 concentrations: 0 (100% N2), 21, 50, and 100% at a continuous positive airway pressure of 30 cmH2O via an in situ Y-endotracheal tube. Under control conditions, inspiratory time and the duration of the single longest breathing episode decreased from 598 +/- 99 (SD) ms and 24 +/- 10 min in sham group to 393 +/- 162 ms and 11.0 +/- 3.0 min in vagotomized group (P = 0.04 and 0.033), respectively. In response to lung distension with 100% N2, breathing time decreased from 44 +/- 17 to 20 +/- 18% (P = 0.045) in sham-operated fetuses, whereas it remained unchanged in the vagotomized group. In response to 100% O2, fetal arterial PO2 increased in five of eight fetuses sham-operated from 18.2 +/- 5.1 to 227 +/- 45 Torr (P = 0.0001) and in six of eight vagotomized fetuses from 18.5 +/- 4.4 to 172 +/- 39 Torr (P < 0.001). Although arousal was observed in all oxygenated fetuses at the onset of breathing, the duration of arousal was markedly attenuated in vagotomized fetuses (14 +/- 10 vs. 46 +/- 29 min in sham group; P = 0.024). Frequency and amplitude of breathing and respiratory output (frequency x amplitude) increased only in sham group (P = 0.02, 0.004, and 0.0002, respectively). We conclude that in response to lung distension and oxygenation, arousal and stimulation of breathing during active and quite sleep are critically dependent on intact vagal nerves.  相似文献   

17.
The effects on breathing movements and sleep state of cholecystokinin octapeptide (CCK-8) and its antagonist, proglumide, have been studied in unanaesthetised fetal lambs of 124-142 days gestation. CCK-8 when given into a lateral cerebral ventricle as bolus injections of 10-500 ng caused dose-related periods of apnea ranging from 63-214 min. When given as a 100 ng bolus followed by a 50 ng/h infusion for 2 h there was a prolonged period of apnea lasting 331 +/- 56 min. There was no effect of CCK-8 when given in higher doses (1-50 micrograms). The antagonist proglumide reversed the apnea induced by CCK-8 infusion, but had no effect when given alone, nor did it affect the normal fetal depressive response to hypoxia. Neither CCK-8 nor proglumide had any effect on electrocortical activity. We conclude that CCK has no role in the inhibitory mechanisms causing the apnea associated with high voltage electrocortical activity or hypoxia in the fetus. Furthermore CCK does not appear to be involved in the regulation of sleep state in the fetal lamb.  相似文献   

18.
Hypoxia inhibits fetal breathing movements but after birth it stimulates breathing. These differences have long been thought to involve central nervous inhibitory mechanisms. Such mechanisms might exert a tonic inhibition of fetal breathing movements at normal fetal PaO2 and the rise in PaO2 at birth might lift this inhibitory effect. To test this hypothesis 7 fetal sheep were chronically instrumented at 125-130 days for recording electrocortical activity (ECoG), and the electromyograph (EMG) activity of the diaphragm and neck muscles. Catheters were placed in a fetal carotid and a brachial artery and in the fetal trachea. For an extracorporeal membrane oxygenation system a 12 F gauge silastic catheter was placed in the right atrium for draining fetal blood and a 9.6 F gauge catheter was placed in a carotid artery to return oxygenated blood. Three days after operation the fetuses were connected to the extracorporeal membrane oxygenation system and fetal PaO2 was raised to 65.2 +/- 4.4 mmHg (SEM) for 6 to 19 h without changing pH or PaCO2. Neither the incidence of high voltage ECoG (48.5 +/- SEM 2.0% vs 52.8 +/- 3.3%) nor of fetal breathing movements (37.3 +/- 2.6% vs 23.8 +/- 5.9%) changed during the periods of hyperoxia. Since fetal breathing movements did not become continuous, we conclude that the lower PaO2 in the fetus compared to the neonate does not exert a tonic inhibitory influence on fetal breathing movements.  相似文献   

19.
We studied the effects of inhibitors of prostaglandin synthesis on fetal breathing movements on 17 occasions in 11 lambs (gestational age 125-141 days). We gave 12 h infusions of sodium mechlofenamate (8.6-22.2 mg.kg-1) in 13 studies and indomethacin (21.8-38.8 mg.kg-1) in four studies. Results were similar with both agents and did not correlate with drug dosage. There were no changes in fetal arterial blood pressure, pH or blood gas tensions. We assessed fetal breathing movements by measurements of tracheal pressure for a control period of 224 h prior to and 208 h during the infusion of inhibitors of prostaglandin synthesis; their administration caused a marked stimulation of fetal breathing movements judged from the following four variables: (1) incidence of fetal breathing movements increased from 38.4 to 69.2% of the time (P < 0.001); (2) average amplitude of change in tracheal pressure during fetal breathing movements increased from 4.1 to 6.0 torr (P < 0.01); (3) maximal amplitude of change in tracheal pressure during fetal breathing movements increased from 8.8 to 13.4 torr (P < 0.01); and (4) the duration of the longest continuous episode of fetal breathing movements increased from 37 to 229 min (P < 0.05). Two fetuses had electrocorticogram (ECoG) recordings. In control periods, fetal breathing movements occurred only during low voltage, high frequency ECoG activity; however, during infusions of inhibitors of prostaglandin synthesis, fetal breathing movements occurred also during high voltage, low frequency ECoG activity. We conclude that inhibitors of prostaglandin synthesis stimulate fetal breathing movement in fetal sheep. These results suggest that a component of the prostaglandin system is a factor which inhibits breathing movements during fetal life.  相似文献   

20.
Core temperature of fetal sheep was raised by perfusing warm water through a loop implanted into the abdomen, or into the stomach via the oesophagus. Raising fetal temperature by 0.8-2 degrees C was associated with an increase in amplitude and incidence of breathing movements, and an increase in the proportion of breathing movements that occurred during high voltage electrocortical (ECoG) activity. Fetal hyperthermia was maintained for 8 h, but the augmentation of breathing movements did not last for more than 2-3 h. The results indicate that changes of maternal temperature caused by hot weather, exercise, fever, and possibly diurnal changes of body temperature could alter the amplitude and pattern of fetal breathing movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号