首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transcranial magnetic stimulation (TMS) noninvasively interferes with human cortical function, and is widely used as an effective technique for probing causal links between neural activity and cognitive function. However, the physiological mechanisms underlying TMS-induced effects on neural activity remain unclear. We examined the mechanism by which TMS disrupts neural activity in a local circuit in early visual cortex using a computational model consisting of conductance-based spiking neurons with excitatory and inhibitory synaptic connections. We found that single-pulse TMS suppressed spiking activity in a local circuit model, disrupting the population response. Spike suppression was observed when TMS was applied to the local circuit within a limited time window after the local circuit received sensory afferent input, as observed in experiments investigating suppression of visual perception with TMS targeting early visual cortex. Quantitative analyses revealed that the magnitude of suppression was significantly larger for synaptically-connected neurons than for isolated individual neurons, suggesting that intracortical inhibitory synaptic coupling also plays an important role in TMS-induced suppression. A conventional local circuit model of early visual cortex explained only the early period of visual suppression observed in experiments. However, models either involving strong recurrent excitatory synaptic connections or sustained excitatory input were able to reproduce the late period of visual suppression. These results suggest that TMS targeting early visual cortex disrupts functionally distinct neural signals, possibly corresponding to feedforward and recurrent information processing, by imposing inhibitory effects through intracortical inhibitory synaptic connections.  相似文献   

2.
Supèr H  Romeo A 《PloS one》2011,6(6):e21641
In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (~9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.  相似文献   

3.
Visual stimuli evoke fast-evolving activity patterns that are distributed across multiple cortical areas. These areas are hierarchically structured, as indicated by their anatomical projections, but how large-scale feedforward and feedback streams are functionally organized in this system remains an important missing clue to understanding cortical processing. By analyzing visual evoked responses in laminar recordings from 6 cortical areas in awake mice, we uncovered a dominant feedforward network with scale-free interactions in the time domain. In addition, we established the simultaneous presence of a gamma band feedforward and 2 low frequency feedback networks, each with a distinct laminar functional connectivity profile, frequency spectrum, temporal dynamics, and functional hierarchy. We could identify distinct roles for each of these 4 processing streams, by leveraging stimulus contrast effects, analyzing receptive field (RF) convergency along functional interactions, and determining relationships to spiking activity. Our results support a dynamic dual counterstream view of hierarchical processing and provide new insight into how separate functional streams can simultaneously and dynamically support visual processes.

Visual stimuli evoke fast-evolving activity patterns that are distributed across multiple cortical areas, but how large-scale feedforward and feedback streams are functionally organized in this system remains unclear. Visual evoked responses in laminar recordings from six cortical areas in awake mice reveal how layers and rhythms dynamically orchestrate functional streams in vision.  相似文献   

4.
神经系统中存在大量下行投射,与上行输入一起形成复杂的前馈与反馈回路,调控神经信号的传导和处理,但目前对皮层内反馈投射的功能作用认识还比较薄弱.通过微量注射抑制性神经递质γ-氨基丁酸(γ-aminobutyric acid,GABA),使猫纹外皮层后内侧外上雪氏区(area posteromedial lateral suprasylvian,PMLS)局部可逆性失活,使用胞外记录方法,研究初级视皮层17区神经元反应特性的变化.实验结果显示,PMLS区失活后,17区细胞对运动刺激的反应总体减弱,反应的相对稳定性基本不变,最高发放率/自发之比有所下降.与此同时,细胞的方向选择性指数减小,朝向选择性无显著变化.除少数"双向"反应细胞外,绝大部分细胞的最优方向基本不变.进一步分析发现,细胞对各个方向刺激的反应普遍下降,最优方向上的下降程度最大,是导致方向选择性减弱的主要原因.这些结果表明,PMLS区反馈投射可增强初级视皮层的方向选择性,而对朝向选择性影响有限.这一作用特点体现了PMLS区在皮层中偏重处理运动视觉信息的功能.  相似文献   

5.
Although nearly half of the synaptic input to neurons in the dorsal thalamus comes from the cerebral cortex, the role of corticothalamic projections in sensory processing remains elusive. Although sensory afferents certainly establish the basic receptive field properties of thalamic neurons, increasing evidence indicates that feedback from the cortex plays a crucial role in shaping thalamic responses. Here, we review recent work on the corticothalamic pathways associated with the visual, auditory, and somatosensory systems. Collectively, these studies demonstrate that sensory responses of thalamic neurons result from dynamic interactions between feedforward and feedback pathways.  相似文献   

6.
Keller GB  Bonhoeffer T  Hübener M 《Neuron》2012,74(5):809-815
Studies in anesthetized animals have suggested that activity in early visual cortex is mainly driven by visual input and is well described by a feedforward processing hierarchy. However, evidence from experiments on awake animals has shown that both eye movements and behavioral state can strongly modulate responses of neurons in visual cortex; the functional significance of this modulation, however, remains elusive. Using visual-flow feedback manipulations during locomotion in a virtual reality environment, we found that responses in layer 2/3 of mouse primary visual cortex are strongly driven by locomotion and by mismatch between actual and expected visual feedback. These data suggest that processing in visual cortex may be based on predictive coding strategies that use motor-related and visual input to detect mismatches between predicted and actual visual feedback.  相似文献   

7.
A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours. Received: 28 October 1998 / Accepted in revised form: 19 March 1999  相似文献   

8.
Alitto HJ  Usrey WM 《Neuron》2008,57(1):135-146
In addition to the classical, center/surround receptive field of neurons in the lateral geniculate nucleus (LGN), there is an extraclassical, nonlinear surround that can strongly suppress LGN responses. This form of suppression likely plays an important role in adjusting the gain of LGN responses to visual stimuli. We performed experiments in alert and anesthetized macaque monkies to quantify extraclassical suppression in the LGN and determine the roles of feedforward and feedback pathways in the generation of LGN suppression. Results show that suppression is significantly stronger among magnocellular neurons than parvocellular neurons and that suppression arises too quickly for involvement from cortical feedback. Furthermore, the amount of suppression supplied by the retina is not significantly different from that in the LGN. These results indicate that extraclassical suppression in the macaque LGN relies on feedforward mechanisms and suggest that suppression in the cortex likely includes a component established in the retina.  相似文献   

9.
Transcranial magnetic stimulation (TMS) allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC), TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious) vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus) and after (post-stimulus) the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham), and control site TMS (vertex). Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal) priming.  相似文献   

10.
The neural basis of selective spatial attention presents a significant challenge to cognitive neuroscience. Recent neuroimaging studies have suggested that regions of the parietal and temporal cortex constitute a "supramodal" network that mediates goal-directed attention in multiple sensory modalities. Here we used transcranial magnetic stimulation (TMS) to determine which cortical subregions control strategic attention in vision and touch. Healthy observers undertook an orienting task in which a central arrow cue predicted the location of a subsequent visual or somatosensory target. To determine the attentional role of cortical subregions at different stages of processing, TMS was delivered to the right hemisphere during cue or target events. Results indicated a critical role of the inferior parietal cortex in strategic orienting to visual events, but not to somatosensory events. These findings are inconsistent with the existence of a supramodal attentional network and instead provide direct evidence for modality-specific attentional processing in parietal cortex.  相似文献   

11.
Haynes JD  Driver J  Rees G 《Neuron》2005,46(5):811-821
Identifying the neural basis of visibility is central to understanding conscious visual perception. Visibility of basic features such as brightness is often thought to reflect activity in just early visual cortex. But here we show under metacontrast masking that fMRI activity in stimulus-driven areas of early visual cortex did not reflect parametric changes in the visibility of a brightness stimulus. The psychometric visibility function was instead correlated with activity in later visual regions plus parieto-frontal areas, and surprisingly, in representations of the unstimulated stimulus surround for primary visual cortex. Critically, decreased stimulus visibility was associated with a regionally-specific decoupling between early visual cortex and higher visual areas. This provides evidence that dynamic changes in effective connectivity can closely reflect visual perception.  相似文献   

12.
Frequency modulation (FM) is a basic constituent of vocalisation in many animals as well as in humans. In human speech, short rising and falling FM-sweeps of around 50 ms duration, called formant transitions, characterise individual speech sounds. There are two representations of FM in the ascending auditory pathway: a spectral representation, holding the instantaneous frequency of the stimuli; and a sweep representation, consisting of neurons that respond selectively to FM direction. To-date computational models use feedforward mechanisms to explain FM encoding. However, from neuroanatomy we know that there are massive feedback projections in the auditory pathway. Here, we found that a classical FM-sweep perceptual effect, the sweep pitch shift, cannot be explained by standard feedforward processing models. We hypothesised that the sweep pitch shift is caused by a predictive feedback mechanism. To test this hypothesis, we developed a novel model of FM encoding incorporating a predictive interaction between the sweep and the spectral representation. The model was designed to encode sweeps of the duration, modulation rate, and modulation shape of formant transitions. It fully accounted for experimental data that we acquired in a perceptual experiment with human participants as well as previously published experimental results. We also designed a new class of stimuli for a second perceptual experiment to further validate the model. Combined, our results indicate that predictive interaction between the frequency encoding and direction encoding neural representations plays an important role in the neural processing of FM. In the brain, this mechanism is likely to occur at early stages of the processing hierarchy.  相似文献   

13.

Background

Humans can effortlessly segment surfaces and objects from two-dimensional (2D) images that are projections of the 3D world. The projection from 3D to 2D leads partially to occlusions of surfaces depending on their position in depth and on viewpoint. One way for the human visual system to infer monocular depth cues could be to extract and interpret occlusions. It has been suggested that the perception of contour junctions, in particular T-junctions, may be used as cue for occlusion of opaque surfaces. Furthermore, X-junctions could be used to signal occlusion of transparent surfaces.

Methodology/Principal Findings

In this contribution, we propose a neural model that suggests how surface-related cues for occlusion can be extracted from a 2D luminance image. The approach is based on feedforward and feedback mechanisms found in visual cortical areas V1 and V2. In a first step, contours are completed over time by generating groupings of like-oriented contrasts. Few iterations of feedforward and feedback processing lead to a stable representation of completed contours and at the same time to a suppression of image noise. In a second step, contour junctions are localized and read out from the distributed representation of boundary groupings. Moreover, surface-related junctions are made explicit such that they are evaluated to interact as to generate surface-segmentations in static images. In addition, we compare our extracted junction signals with a standard computer vision approach for junction detection to demonstrate that our approach outperforms simple feedforward computation-based approaches.

Conclusions/Significance

A model is proposed that uses feedforward and feedback mechanisms to combine contextually relevant features in order to generate consistent boundary groupings of surfaces. Perceptually important junction configurations are robustly extracted from neural representations to signal cues for occlusion and transparency. Unlike previous proposals which treat localized junction configurations as 2D image features, we link them to mechanisms of apparent surface segregation. As a consequence, we demonstrate how junctions can change their perceptual representation depending on the scene context and the spatial configuration of boundary fragments.  相似文献   

14.
脑神经网络信息加工的实现方式主要依赖于兴奋性和抑制性突触连接.脑内抑制性神经元数量较少,但在信息加工和神经可塑性等方面作用极其重要,而且抑制系统失常与多种脑功能障碍有关联.脑内抑制性神经环路可粗略分为皮层内和皮层间(包括前馈和反馈)两种,分别介导同一脑区内和不同脑区间的抑制作用.本文先围绕中心-外周抑制和运动方向互斥介绍了皮层间、皮层内抑制的行为表现和作用机制,然后以老化和精神疾病为例综述了脑功能障碍与视觉系统皮层抑制功能变化间的联系,希望能对相关研究工作有所助益.  相似文献   

15.
The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells.  相似文献   

16.
Freeman TC  Durand S  Kiper DC  Carandini M 《Neuron》2002,35(4):759-771
Neurons in primary visual cortex (V1) are thought to receive inhibition from other V1 neurons selective for a variety of orientations. Evidence for this inhibition is commonly found in cross-orientation suppression: responses of a V1 neuron to optimally oriented bars are suppressed by superimposed mask bars of different orientation. We show, however, that suppression is unlikely to result from intracortical inhibition. First, suppression can be obtained with masks drifting too rapidly to elicit much of a response in cortex. Second, suppression is immune to hyperpolarization (through visual adaptation) of cortical neurons responding to the mask. Signals mediating suppression might originate in thalamus, rather than in cortex. Thalamic neurons exhibit some suppression; additional suppression might arise from depression at thalamocortical synapses. The mechanisms of suppression are subcortical and possibly include the very first synapse into cortex.  相似文献   

17.
Phosphenes are commonly evoked by transcranial magnetic stimulation (TMS) to study the functional organization, connectivity, and excitability of the human visual brain. For years, phosphenes have been documented only from stimulating early visual areas (V1-V3) and a handful of specialized visual regions (V4, V5/MT+) in occipital cortex. Recently, phosphenes were reported after applying TMS to a region of posterior parietal cortex involved in the top-down modulation of visuo-spatial processing. In the present study, we systematically characterized parietal phosphenes to determine if they are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Using technology developed in-house to record the subjective features of phosphenes, we found no systematic differences in the size, shape, location, or frame-of-reference of parietal phosphenes when compared to their occipital counterparts. In a second experiment, discrete deactivation by 1 Hz repetitive TMS yielded a double dissociation: phosphene thresholds increased at the deactivated site without producing a corresponding change at the non-deactivated location. Overall, the commonalities of parietal and occipital phosphenes, and our ability to independently modulate their excitability thresholds, lead us to conclude that they share a common neural basis that is separate from either of the stimulated regions.  相似文献   

18.
Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.  相似文献   

19.
Temereanca S  Simons DJ 《Neuron》2004,41(4):639-651
Corticothalamic (CT) projections are approximately 10 times more numerous than thalamocortical projections, yet their function in sensory processing is poorly understood. In particular, the functional significance of the topographic precision of CT feedback is unknown. We addressed these issues in the rodent somatosensory whisker/barrel system by deflecting individual whiskers and pharmacologically enhancing activity in layer VI of single whisker-related cortical columns. Enhancement of corticothalamic activity in a cortical column facilitated whisker-evoked responses in topographically aligned thalamic barreloid neurons, while activation of an adjacent column weakly suppressed activity at the same thalamic site. Both effects were more pronounced when stimulating the preferred, or principal, whisker than for adjacent whiskers. Thus, facilitation by homologous CT feedback sharpens thalamic receptive field focus, while suppression by nonhomologous feedback diminishes it. Our findings demonstrate that somatosensory cortex can selectively regulate thalamic spatial response tuning by engaging topographically specific excitatory and inhibitory mechanisms in the thalamus.  相似文献   

20.
Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号