首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor and embryonic cell surfaces are examined in this symposiumwith respect to their roles in cell-cell interactions and inearly development and malignancy. Three sets of studies havebeen recently performed in my laboratory to help elucidate thenature of tumor and embryonic cell surfaces and the means bywhich these cells adhere to each other. We separated an in vivo129/J ascites mouse teratoma into specific subpopuladons ofcells by velocity sedimentation in shallow density gradients.The teratoma consistently separated into two major populations:"large" and "small" cells. Only the large cells displayed "malignant-like"surface characteristics in terms of their agglutinability withcarbohydrate binding lectins. The teratoma cells were also synchronizedin culture with thymidine plus colcemid. In these synchronizedcultures, cellular adhesiveness and glutamine synthetase specificactivity displayed oscillatory patterns with peaks of glutaminesynthetase specific activity occurring just prior to peaks ofadhesivenesss. Also, both glutamine synthetase specific activityand cellular adhesiveness were enhanced by two compounds: actinomycinD and hydrocortisone. Based upon previous work that implicatesL-glutamine in intercellular adhesion, it is not unreasonableto speculate that glutamine synthetase specific activity andcellular adhesiveness may be causally related. The problem ofaltered tumor cell adhesiveness is important because it seems,in part, to be responsible for tumor spread. Finally, the seaurchin embryo system was utilized to identify specific cellsurface carbohydrates that may be involved in intercellularadhesion. In 15 separate experiments with each sugar and with15 different saccharides, D-galactose and N-acetyl-D-galactosaminewere the best inhibitors of rotation-medicated reaggregationof 24-hr sea urchin embryo cells dissociated by removal of divalentcations. ß-galactosidase also inhibited reaggregationof these cells. These results implicate galactopyranosyl-likeresidues in the adhesion of 24-hr sea urchin embryo cells witheach other.  相似文献   

2.
A density dependent stimulation of glutamine synthetase (GS) activity has been observed in cultures of mouse teratoma cells. GS specific activity increased as cultures approached confluency to a level greater than 2-fold over the basal level found in sparse cultures. After confluency the GS specific activity returned to the basal level found in sparse cultures. The enzyme increase could not be attributed to age of cultures, medium or glutamine depletion, cell leakage of GS, or change in the amount of cellular protein. Dibutyryl cyclic AMP (db-cAMP) plus theophylline lowered GS specific activity both in cultured teratoma and in teratoma obtained from ascites grown tumors. The enzyme increase observed in cultured teratoma cells could be prevented by cycloheximide, and enhanced by hydrocortisone or actinomycin D.  相似文献   

3.
Intercellular adhesion is assumed to play an important role in a multitude of biological phenomena governing cellular behavior. The rate of intercellular adhesion as a function of the cell cycle traverse has been investigated using, in the monolayer assay, synchronized Chinese Hamster Ovary-K1 cells. Results obtained demonstrate that cells in G1 adhere to G1 cells at twice the rate that S cells adhere to each other. G1 cells adhere to S cells at an intermediate rate. The additive adhesiveness seen in G1 is abolished by brief trypsinization, suggesting that in G1 a qualitative or quantitative change occurs with respect to the presence or exposure of components involved in intercellular adhesion.  相似文献   

4.
HeLa cells harvested from density-inhibited or fast growing suspension cultures, were incubated in NaCl solutions of different tonicity. Cell size enlargement produced by hypotonicity is accompanied by an increased sedimentation rate of the density-inhibited cells, whereas no appreciable change is observed in the sedimentation rate of fast growing cells. Hypotonicity also has no effect on the sedimentation rate of density-inhibited cells which previously had been treated with neuraminidase or trypsin. It is shown that the effect of hypotonicity on density-inhibited cells cannot be ascribed to release of cell surface sialic acids during hypotonic incubation. Several arguments are presented which indicate that the changes in sedimentation rate, as measured in the rotating suspension system, are not the direct consequence of the alterations in cell size, but rather must be attributed to differences in intercellular adhesiveness resulting from the size alterations. Analogous changes in intercellular adhesiveness and cell size are shown to occur during growth in isotonic suspension culture. The results can be explained by assuming that changes in cell size affect the intercellular adhesiveness by modifying the extent to which cell surface sialic acids counteract adhesion.  相似文献   

5.
-Glutamine is required for the synthesis of complex carbohydrates required for the intercellular adhesion of mouse teratoma cells. It remained to be seen if these pathways were of general importance in the adhesion of other cell types. In this study, using an electronic particle counter assay to measure cell adhesion, Ehrlich ascites, Sarcoma 180 and Taper liver ascites tumor cells require exogenous -glutamine to aggregate. This effect is concentration dependent and the amino sugar, -glucosamine, replaces the glutamine requirement. Structural analogs of the active compounds are substantially less effective and metabolic inhibitors block the activity of the effective compounds. Two specific glutamine antagonists, DON (6-diazo-5-oxo- -norleucine) and azaserine (O-diazoacetyl-serine) decrease the action of -glutamine but not of -glucosamine. Trypsin dissociated six day old chick embryo neural retina cells do not require -glutamine to reaggregate, though the rate of aggregation is enhanced after preincubation with glutamine. Dissociation of small clumps of neural retina and inhibition of reaggregation of these cells are facilitated by preincubation with azaserine for 3–5 h. -Glutamine reduces the effect of azaserine on retina cells. These results are consistent with known metabolic pathways and suggest that -glutamine is involved in the synthesis of complex carbohydrates necessary for adhesion in a variety of cell types. The defective adhesion of the tumor cells examined may result from inability to produce glutamine synthetase, or effectively store cr transport -glutamine.  相似文献   

6.
The influence of intercellular contacts on the ability of the upper cell surface to adsorb and to phagocytose particles was studied in different types of cultured cells of mouse origin. In cultures of the MPTR strain, cells formed firm contacts which remained unbroken during the epithelial sheet migration into the wound. The contact inhibition of phagocytosis was found in these cultures. The phenomenon involved a low phagocytic activity of the sheet cells which made intercellular contacts in all directions, and of high phagocytic activity of marginal cells which had activity moving free edges. Other epithelial cultures, such as explants of normal kidney and hepatoma 60, behaved similarly. Cultured embryo fibroblasts and hepatoma 22a cells did not form firm intercellular contacts and migrated into the wound one by one. In these cultures most cells had high phagocytic activity. It is suggested that the formation of intercellular contacts alters the upper cell surface ability to adhesion and phagocytosis of particles.  相似文献   

7.
Tumorigenesis often involves specific changes in cell motility and intercellular adhesion. Understanding the collective cancer cell behavior associated with these specific changes could facilitate the detection of malignant characteristics during tumor growth and invasion. In this study, a cellular vertex model is developed to investigate the collective dynamics of a disk-like aggregate of cancer cells confined in a confluent monolayer of normal cells. The effects of intercellular adhesion and cell motility on tumor progression are examined. It is found that the stresses in both the cancer cells and the normal cells increase with tumor growth, resulting in a crowded environment and enhanced cell apoptosis. The intercellular adhesion between cancer cells and normal cells is revealed to promote tumor growth and invasion. The tumor invasion dynamics hinges on the motility of cancer cells. The cancer cells could orchestrate into different collective migration modes, e.g., directional migration and rotational oscillations, dictated by the competition between cell persistence and local coordination. Phase diagrams are established to reveal the competitive mechanisms. This work highlights the role of mechanics in regulating tumor growth and invasion.  相似文献   

8.
Earlier studies in our laboratory have shown that C-6 glial cells in culture exhibit astrocytic properties with increasing cell passage. In this study, we tested the responsiveness of early and late passage C-6 glial cells to various cultures conditions: culture substrata (collagen, poly-L-lysine, plastic), or supplements for the culture medium, DMEM, [fetal calf, or heat inactivated (HI) serum, or media conditioned from mouse neuroblastoma cells (NBCM) or primary chick embryo cultured neurons (NCM)]. Glutamine synthetase (GS) and cyclic nucleotide phosphohydrolase (CNP), astrocytic and oligodendrocytic glial markers, were used. Cell numer and protein content increased exponentially with days in culture regardless of the type of the substratum or cell passage. Differences in cell morphology among the three types of substratum were also reflected on GS activity, which rose by three-fold on culture day 3 for cells grown on collagen; thereafter, GS profiles were similar for all substrata. This early rise in GS is interpreted to reflect differential cell adhesion processes on the substrata; specifically, cell adhesion on the collagen stimulated differentiation into astrocytic phenotype.Analogous to immature glia cells in primary cultures, early passage C-6 glial cells responded to neuronal factors supplied either from NCM or NBCM by expressing reduced GS activity, the astrocytic marker and enhanced CNP activity, the oligodendrocytic marker. Thus, early passage cells can be induced to express either astrocytic or oligodendrocytic phenotype. In accordance with our previous reports on primary glial cells, late passage C-6 cells exhibit their usual astrocytic behavior, responding to serum factors with GS activity. Moreover, whereas NCM or NBCM alone markedly lowered GS activity, a combination with serum restored activity. The present findings confirm our previous observations and further establish the C-6 glial cells as a reliable model to study immature glia.Special issue dedicated to Dr. Paola S. Timiras.  相似文献   

9.
The relation of the total cellular content of sialic acid to phenotypic expression of B16 mouse melanoma cells was examined by using phenotype-modifying reagents and more than 10 cloned cell lines with spontaneous phenotypic variations. The sialic acid content changed in a growth phase-dependent manner with a peak in the early log phase of growth. This peak completely disappeared when cells were treated with 5-bromodeoxyuridine (BrdU), suggesting its relation to quasi-normal phenotypes of the treated cells. BrdU treatment also reduced the cellular sialic acid content itself and resulted in the suppression of the activity of tyrosinase, the key enzyme for melanogenesis, and a considerable increase in cell-to-substratum adhesiveness. Treatment with theophylline, in contrast, markedly elevated the sialic acid content, which was accompanied by dramatic increments in tyrosinase activity and pigmentation as well as a slight increase in adhesiveness. The results show a correlation of sialic acid level with tyrosinase expression but not with cell adhesion. From comparison of spontaneous phenotypic variations, the correlation of sialic acid level with tyrosinase activity was confirmed, while there was only a slight correlation with adhesiveness. It is thus suggested that sialylation/desialylation, being reflected as variations in cellular sialic acid content, is implicated in melanoma cell differentiation in terms of tyrosinase expression.  相似文献   

10.
Summary HeLa cells harvested from density-inhibited or fast growing suspension cultures, were incubated in NaCl solutions of different tonicity. Cell size enlargement produced by hypotonicity is accompanied by an increased sedimentation rate of the density-inhibited cells, whereas no appreciable change is observed in the sedimentation rate of fast growing cells. Hypotonicity also has no effect on the sedimentation rate of density-inhibited cells which previously had been treated with neuraminidase or trypsin. It is shown that the effect of hypotonicity on density-inhibited cells cannot be ascribed to release of cell surface sialic acids during hypotonic incubation. Several arguments are presented which indicate that the changes in sedimentation rate, as measured in the rotating suspension system, are not the direct consequence of the alterations in cell size, but rather must be attributed to differences in intercellular adhesiveness resulting from the size alterations. Analogous changes in intercellular adhesiveness and cell size are shown to occur during growth in isotonic suspension culture. The results can be explained by assuming that changes in cell size affect the intercellular adhesiveness by modifying the extent to which cell surface sialic acids counteract adhesion.  相似文献   

11.
Weiser S  Miu J  Ball HJ  Hunt NH 《Cytokine》2007,37(1):84-91
Changes to the cerebral microvasculature are evident during cerebral malaria (CM). Activation of the endothelium is likely to be due to the actions of cytokines, circulating levels of which are elevated during CM. Endothelial cells are known to up-regulate the expression of cellular adhesion molecules, which can lead to cellular sequestration and obstruction of vessels. However, it is unknown whether cytokines synergise in the up-regulation of the adhesion molecules involved in CM. In this study, the mRNA and/or protein expression of the adhesion molecules vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-Selectin were examined in a mouse brain endothelial cell line. Endothelial cells were stimulated with interferon-gamma (IFN-gamma), tumour necrosis factor (TNF) and lymphotoxin-alpha (LT-alpha), alone or in combination. The expression of ICAM-1, VCAM-1, P-selectin and E-Selectin mRNA in mouse brain endothelial cells by TNF and/or LT-alpha was found to be significantly enhanced in the presence of IFN-gamma. The same synergistic effect was found when analyzing ICAM-1 protein expression in cytokine stimulated mouse brain endothelial cells. The findings show that cytokines can synergise to influence gene expression and protein expression in a mouse brain endothelial cell line.  相似文献   

12.
Cell sorting is a dynamical cooperative phenomenon that is fundamental for tissue morphogenesis and tissue homeostasis. According to Steinberg's differential adhesion hypothesis, the structure of sorted cell aggregates is determined by physical characteristics of the respective tissues, the tissue surface tensions. Steinberg postulated that tissue surface tensions result from quantitative differences in intercellular adhesion. Several experiments in cell cultures as well as in developing organisms support this hypothesis.The question of how tissue surface tension might result from differential adhesion was addressed in some theoretical models. These models describe the cellular interdependence structure once the temporal evolution has stabilized. In general, these models are capable of reproducing sorted patterns. However, the model dynamics at the cellular scale are defined implicitly and are not well-justified. The precise mechanism describing how differential adhesion generates the observed sorting kinetics at the tissue level is still unclear.It is necessary to formulate the concepts of cell level kinetics explicitly. Only then it is possible to understand the temporal development at the cellular and tissue scales. Here we argue that individual cell mobility is reduced the more the cells stick to their neighbors. We translate this assumption into a precise mathematical model which belongs to the class of stochastic interacting particle systems. Analyzing this model, we are able to predict the emergent sorting behavior at the population level. We describe qualitatively the geometry of cell segregation depending on the intercellular adhesion parameters. Furthermore, we derive a functional relationship between intercellular adhesion and surface tension and highlight the role of cell mobility in the process of sorting. We show that the interaction between the cells and the boundary of a confining vessel has a major impact on the sorting geometry.  相似文献   

13.
The adhesiveness of cancerous cells to their neighboring cells significantly contributes to tumor progression and metastasis. The single-cell force spectroscopy (SCFS) approach was implemented to survey the cell–cell adhesion force between cancerous cells in three cancerous breast cell lines (MCF-7, T47D, and MDA-MB-231). The gene expression levels of two dominant cell adhesion markers (E-cadherin and N-cadherin) were quantified by real-time PCR. Additionally, the local stiffness of the cell bodies was measured by atomic force microscopy (AFM), and the actin cytoskeletal organization was examined by confocal microscopy. Results indicated that the adhesion force between cells was conversely correlated with their invasion potential. The highest adhesion force was observed in the MCF-7 cells. A reduction in cell–cell adhesion, which is required for the detachment of cells from the main tumor during metastasis, is partly due to the loss of E-cadherin expression and the enhanced expression of N-cadherins. The reduced adhesion was accompanied by the softening of cells, as described by the rearrangement of actin filaments through confocal microscopy observations. The softening of the cell body and the reduced cellular adhesiveness are two adaptive mechanisms through which malignant cells achieve the increased deformability, motility, and strong metastasis potential necessary for passage through endothelial junctions and positioning in host tissue. This study presented application of SCFS to survey cell phenotype transformation during cancer progression. The results can be implemented as a platform for further investigations that target the manipulation of cellular adhesiveness and stiffness as a therapeutic choice.  相似文献   

14.
Glycopeptides were isolated from the cell surfaces of bovine cerebral cortex that could inhibit increase in cell numbers in tissue culture and cellular protein synthesis. This cell growth inhibition apparently affected all cells exposed, could completely block cell division in a reversible manner and synchronized BHK-21 cell cultures. Polyoma-virus-transformed BHK-21 cells were completely insensitive to the inhibitor. Fractionation of the inhibitor on a Bio-Gel P-100 column revealed two peaks of biologically active material eluting at apparent molecular weights of 45 000 and 10 000 with A 1cm,280 1% 11.0. Affinity purification of the inhibitory fractions on a Ulex europaeus agglutination I lectin column resulted in retention of the inhibitory activity, suggesting the inhibitor material was a glycopeptide. Subsequent elution with 0.10 M-fucose resulted in a 244-fold increase in the specific biological activity over the starting material. Although purified from bovine brain, the material could inhibit baby-hamster kidney cell protein synthesis by 50% at a concentration of 5 x 10(6) molecules per target cell. Analysis by competitive radioimmunoassay or immunoadsorption indicated that the bovine inhibitor was structurally related to, although not necessarily identical with, a similar inhibitory glycopeptide preparation that we had previously isolated from mouse brain.  相似文献   

15.
We here demonstrate that ligand binding to MHC class I molecules induces homotypic cell adhesion of lymphocytes and monocytes. mAb to beta 2-microglobulin caused sustained, largely LFA-1-independent adhesion whereas mAb to the MHC class I alpha H chain caused transient LFA-1-dependent adhesion. Both the protein kinase C inhibitor sphingosine and the tyrosine kinase inhibitor genistein abrogated MHC class I-mediated cellular adhesion. These results indicate that MHC class I molecules transduce signals that induce cell adhesion and suggest that interaction between MHC class I-restricted T cells and APC may result in reciprocal enhanced adhesiveness of these cells.  相似文献   

16.
Cell dissociation and acquisition of cell motility are major events in morphogenesis, wound repair, and cancer invasion and metastasis. We have used the NBT-II bladder carcinoma cell line as a model system to study the mechanisms of these events. Upon exposure to acidic fibroblast growth factor (aFGF), NBT-II cells undergo morphological changes that resemble those described in epithelial-mesenchymal transitions, i.e., dissociation of some or all polygonal epithelial cells and their transformation into motile, fibroblastic-like cells. The disruption of intercellular contacts, which accompanies cell dissociation and acquisition of motility, is correlated with a redistribution of E-cadherin, a Ca(2+)-dependent cell adhesion molecule, over the entire cell surface and within the cytoplasm. However, these modifications are not accompanied by a reduction of the intercellular adhesiveness or a loss of E-cadherin expression. Moreover, the formation of intercellular contacts between fibroblastic-like NBT-II cells results in the relocation of epithelial cadherin (E-cadherin) immunoreactivity on lateral membranes, but is not sufficient to abrogate cell motility. Finally, the overexpression of E-cadherin by NBT-II cells stably transfected with a plasmid containing the mouse E-cadherin cDNA does not impair the scattering effect of aFGF, indicating that high levels of E-cadherin expression do not prevent cells from disrupting their intercellular connections. Altogether, these results suggest that the scattering activity of aFGF is not mediated by direct modulations of E-cadherin expression.  相似文献   

17.
The beauty and diversity of cell shapes have always fascinated both biologists and physicists. In the early 1950, J. Holtfreter coined the term "tissue affinities" to describe the forces behind the spontaneous shaping of groups of cells. These tissue affinites were later on related to adhesive properties of cell membranes. In the 1960, Malcom Steinberg proposed the differential adhesion hypothesis (DAH) as a physical explanation of the liquid-like behaviour of tissues and cells during morphogenesis. However, the link between the cellular properties of adhesion molecules, such as the cadherins, and the physical rules that shape the body, has remained unclear. Recent in vitro studies have now shown that surface tensions, which drive the spontaneous liquid-like behaviour of cell rearrangements, are a direct and linear function of cadherin expression levels. Tissue surface tensions thus arise from differences in intercellular adhesiveness, which validates the DAH in vitro. The DAH was also vindicated in vivo by stunning experiments in Drosophila. The powerful genetic tools available in Drosophila allow to manipulate the levels and patterns of expression of several cadherins and to create artificially differences in intercellular adhesiveness. The results showed that simple laws of thermodynamics, as well as quantitative and qualitative differences in cadherins expression were sufficient to explain processes as complex as the establishment of the anterior-posterior axis and the formation of the compound eye in Drosophila.  相似文献   

18.
E M Bayna  J H Shaper  B D Shur 《Cell》1988,53(1):145-157
Cell surface beta-1,4 galactosyltransferase (GalTase) is shown to mediate intercellular adhesions between embryonal carcinoma (EC) cells and specifically during late morula compaction in the preimplantation mouse embryo. Monospecific anti-GalTase IgG raised against affinity-purified bovine beta-1,4 GalTase recognizes F9 EC cell GalTase as judged by immunoprecipitation and inhibition of GalTase activity, as well as by immunoprecipitation of a single 52 kd metabolically labeled membrane protein. Anti-GalTase IgG inhibits cell adhesions between EC cells, dissociates compacted mouse morulae, and inhibits blastocyst formation. Anti-GalTase IgG specifically inhibits cell adhesions during late morula compaction, coincident with a peak of surface GalTase activity as determined by direct enzyme assay. On EC cells, GalTase activity can be proteolytically released from intact cells, and is localized by indirect immunofluorescence to areas of intercellular contact, consistent with its proposed role in cell adhesion. Beta-1,4 GalTase is the first cell adhesion molecule identified that participates during late morula compaction, subsequent to uvomorulin function.  相似文献   

19.
Adhesive relations among cells are believed to play a major role in determining patterns of serial homology, of intercalary regeneration, and of neuronal connectivity. Models for the genetic control of adhesion during development can provide a framework for further analysis of these phenomena. Investigators studying development of Drosophila have proposed that differentiation of segments and of imaginal discs is controlled by a set of bistable “selector genes”. In each region the settings of the selector genes form a binary “word” which determines the properties of cells in the region, including their adhesiveness. I have made an explicit proposal for the relation between binary words and adhesiveness, by assuming that active selector genes repress synthesis of “adhesor” macromolecules, which promote adhesion. This hypothesis correctly predicts the relative cohesiveness of cells in four pupal tissues of the moth Manduca. Works of cohesion and adhesion among the four cell types are deduced from published results of grafting experiments by modelling insect epidermis as a viscoelastic fluid.Further comparisons between deductions from the genetic and fluid models suggest that selector genes, or the adhesor molecules they regulate, interact within single cells in determining adhesiveness between cells. From a specific version of the genetic model I deduce that pairwise interactions between selector genes or adhesor molecules can determine many, though not all, of the relative works of adhesion between unlike cells in Manduca. The genetic and fluid models thus provide a set of working hypotheses for predicting patterns of intercellular adhesion in insect epidermis and for analyzing results of experiments designed to test such predictions.  相似文献   

20.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号