共查询到20条相似文献,搜索用时 17 毫秒
1.
Aldehyde dehydrogenases (ALDHs) represent a protein superfamily of NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. The Arabidopsis genome contains 14 unique ALDH sequences encoding members of nine ALDH families, including eight known families and one novel family (ALDH22) that is currently known only in plants. Here, we identify members of the ALDH gene superfamily in Arabidopsis; provide a revised, unified nomenclature for these ALDH genes; analyze the molecular relationship among Arabidopsis ALDH genes and compare them to ALDH genes from other species, including prokaryotes and mammals; and describe the role of ALDHs in cytoplasmic male sterility, plant defense and abiotic stress tolerance. 相似文献
2.
Kevei E Gyula P Fehér B Tóth R Viczián A Kircher S Rea D Dorjgotov D Schäfer E Millar AJ Kozma-Bognár L Nagy F 《Current biology : CB》2007,17(17):1456-1464
3.
Membrane trafficking plays a fundamental role in eukaryotic cell biology. Of the numerous known or predicted protein components of the plant cell trafficking system, only a relatively small subset have been characterized with respect to their biological roles in plant growth, development, and response to stresses. In this study, we investigated the subcellular localization and function of an Arabidopsis (Arabidopsis thaliana) small GTPase belonging to the RabE family. RabE proteins are phylogenetically related to well-characterized regulators of polarized vesicle transport from the Golgi apparatus to the plasma membrane in animal and yeast cells. The RabE family of GTPases has also been proposed to be a putative host target of AvrPto, an effector protein produced by the plant pathogen Pseudomonas syringae, based on yeast two-hybrid analysis. We generated transgenic Arabidopsis plants that constitutively expressed one of the five RabE proteins (RabE1d) fused to green fluorescent protein (GFP). GFP-RabE1d and endogenous RabE proteins were found to be associated with the Golgi apparatus and the plasma membrane in Arabidopsis leaf cells. RabE down-regulation, due to cosuppression in transgenic plants, resulted in drastically altered leaf morphology and reduced plant size, providing experimental evidence for an important role of RabE GTPases in regulating plant growth. RabE down-regulation did not affect plant susceptibility to pathogenic P. syringae bacteria; conversely, expression of the constitutively active RabE1d-Q74L enhanced plant defenses, conferring resistance to P. syringae infection. 相似文献
4.
5.
Arabidopsis thaliana RAC/ROP GTPases constitute a plant specific Rho GTPase family in the RAS superfamily, which has been implicated in numerous pivotal signalling cascades in plants. Research has shown that plants in some cases have evolved different modes of regulating Rho GTPase activity as compared to the equivalent systems in animals and yeast. In order to gain structural insight into plant signaling at the molecular level, we have determined the first crystal structure of a RAC-like GTPase belonging to the RAS superfamily from the plant kingdom. The structure of AtRAC7/ROP9 bound to GDP was solved at a resolution of 1.78 A. We have found that the structure of plant Rho GTPases is based upon a conserved G-domain architecture, but structural differences were found concerning the insert region and switch II region of the protein. 相似文献
6.
Latijnhouwers M Hawes C Carvalho C Oparka K Gillingham AK Boevink P 《The Plant journal : for cell and molecular biology》2005,44(3):459-470
GRIP domain proteins are a class of golgins that have been described in yeast and animals. They locate to the trans-Golgi network and are thought to play a role in endosome-to-Golgi trafficking. The Arabidopsis GRIP domain protein, AtGRIP, fused to the green fluorescent protein (GFP), locates to Golgi stacks but does not exactly co-locate with the Golgi marker sialyl transferase (ST)-mRFP, nor with the t-SNAREs Memb11, SYP31 and BS14a. We conclude that the location of AtGRIP is further to the trans side of the stack than STtmd-mRFP. The 185-aa C-terminus of AtGRIP containing the GRIP domain targeted GFP to the Golgi, although a proportion of the fusion protein was still found in the cytosol. Mutation of a conserved tyrosine (Y717) to alanine in the GRIP domain disrupted Golgi localization. ARL1 is a small GTPase required for Golgi targeting of GRIP domain proteins in other systems. An Arabidopsis ARL1 homologue was isolated and shown to target to Golgi stacks. The GDP-restricted mutant of ARL1, AtARL1-T31N, was observed to locate partially to the cytosol, whereas the GTP-restricted mutant AtARL1-Q71L labelled the Golgi and a population of small structures. Increasing the levels of AtARL1 in epidermal cells increased the proportion of GRIP-GFP fusion protein on Golgi stacks. We show, moreover, that AtARL1 interacted with the GRIP domain in a GTP-dependent manner in vitro in affinity chromatography and in the yeast two-hybrid system. This indicates that AtGRIP and AtARL1 interact directly. We conclude that the pathway involving ARL1 and GRIP domain golgins is conserved in plants. 相似文献
7.
8.
The Arabidopsis CDPK-SnRK superfamily of protein kinases 总被引:25,自引:0,他引:25
Hrabak EM Chan CW Gribskov M Harper JF Choi JH Halford N Kudla J Luan S Nimmo HG Sussman MR Thomas M Walker-Simmons K Zhu JK Harmon AC 《Plant physiology》2003,132(2):666-680
The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants. 相似文献
9.
10.
Characterization of GTPase activity of TrmE, a member of a novel GTPase superfamily, from Thermotoga maritima 下载免费PDF全文
A gene encoding a putative GTP-binding protein, a TrmE homologue that is highly conserved in both prokaryotes and eukaryotes, was cloned from Thermotoga maritima, a hyperthermophilic bacterium. T. maritima TrmE was overexpressed in Escherichia coli and purified. TrmE has a GTPase activity but no ATPase activity. The GTPase activity can be competed with GTP, GDP, and dGTP but not with GMP, ATP, CTP, or UTP. K(m) and k(cat) at 70 degrees C were 833 microM and 9.3 min(-1), respectively. Our results indicate that TrmE is a GTP-binding protein with a very high intrinsic GTP hydrolysis rate. We also propose that TrmE homologues constitute a novel subfamily of the GTPase superfamily. 相似文献
11.
Inventory of the superfamily of P-type ion pumps in Arabidopsis 总被引:18,自引:0,他引:18
A total of 45 genes encoding for P-type ATPases have been identified in the complete genome sequence of Arabidopsis. Thus, this plant harbors a primary transport capability not seen in any other eukaryotic organism sequenced so far. The sequences group in all five subfamilies of P-type ATPases. The most prominent subfamilies are P(1B) ATPases (heavy metal pumps; seven members), P(2A) and P(2B) ATPases (Ca(2+) pumps; 14 in total), P(3A) ATPases (plasma membrane H(+) pumps; 12 members including a truncated pump, which might represent a pseudogene or an ATPase-like protein with an alternative function), and P(4) ATPases (12 members). P(4) ATPases have been implicated in aminophosholipid flipping but it is not known whether this is a direct or an indirect effect of pump activity. Despite this apparent plethora of pumps, Arabidopsis appears to be lacking Na(+) pumps and secretory pathway (PMR1-like) Ca(2+)-ATPases. A cluster of Arabidopsis heavy metal pumps resembles bacterial Zn(2+)/Co(2+)/Cd(2+)/Pb(2+) transporters. Two members of the cluster have extended C termini containing putative heavy metal binding motifs. The complete inventory of P-type ATPases in Arabidopsis is an important starting point for reverse genetic and physiological approaches aiming at elucidating the biological significance of these pumps. 相似文献
12.
Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. We emphasize the conserved and novel functions of plant kinesins in the organization and function of the different microtubule arrays. 相似文献
13.
Lin BL Wang JS Liu HC Chen RW Meyer Y Barakat A Delseny M 《Cell stress & chaperones》2001,6(3):201-208
The Arabidopsis genome contains at least 18 genes encoding members of the 70-kilodalton heat shock protein (Hsp70) family, 14 in the DnaK subfamily and 4 in the Hsp110/SSE subfamily. While the Hsp70s are highly conserved, a phylogenetic analysis including all members of this family in Arabidopsis and in yeast indicates the homology of Hsp70s in the subgroups, such as those predicted to localize in the same subcellular compartment and those similar to the mammalian Hsp110 and Grp170. Gene structure and genome organization suggest duplication in the origin of some genes. The Arabidopsis hsp70s exhibit distinct expression profiles; representative genes of the subgroups are expressed at relatively high levels during specific developmental stages and under thermal stress. 相似文献
14.
Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1 总被引:3,自引:0,他引:3
Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 gene. How these mutations affect neuronal development and function remains largely elusive. We generated specific point mutations or small deletions in the Drosophila fragile X-related (Fmr1) gene and examined the roles of Fmr1 in dendritic development of dendritic arborization (DA) neurons in Drosophila larvae. We found that Fmr1 could be detected in the cell bodies and proximal dendrites of DA neurons and that Fmr1 loss-of-function mutations increased the number of higher-order dendritic branches. Conversely, overexpression of Fmr1 in DA neurons dramatically decreased dendritic branching. In dissecting the mechanisms underlying Fmr1 function in dendrite development, we found that the mRNA encoding small GTPase Rac1 was present in the Fmr1-messenger ribonucleoprotein complexes in vivo. Mosaic analysis with a repressor cell marker (MARCM) and overexpression studies revealed that Rac1 has a cell-autonomous function in promoting dendritic branching of DA neurons. Furthermore, Fmr1 and Rac1 genetically interact with each other in controlling the formation of fine dendritic branches. These findings demonstrate that Fmr1 affects dendritic development and that Rac1 is partially responsible for mediating this effect. 相似文献
15.
16.
Eukaryotic cells achieve complexity by compartmentalizing a subset of cellular functions into membrane-bound organelles. Maintaining this high level of cellular organization requires precise regulation of traffic between membranes. This task is accomplished, in part, by rab proteins. How these small GTPases regulate membrane traffic between cellular compartments is not clear. Here we report the characterization of a novel rab GTPase from the soil amoebae Dictyostelium discoideum. The predicted coding sequence of the new rab gene, Dictyostelium rab11b, encodes a protein of 25 kD containing all the structural hallmarks of a rab GTPase. Comparison of the sequence with the GenBank database and cladistic analysis demonstrated Dictyostelium rab11b to be a divergent member of the rab11 branch of rab proteins. Southern analysis revealed the presence of related genes in Dictyostelium. RNAse protection assays showed the Dictyostelium rab11b gene to be expressed at uniform levels throughout growth and development. Gene deletion experiments revealed that Dictyostelium rab11b was not essential for growth or development. Conceivably, the function of rab11b may be redundant with that of related genes in this organism. J. Cell. Biochem. 70:29–37, 1998. © 1998 Wiley-Liss, inc. 相似文献
17.
The small GTPase Ran: interpreting the signs 总被引:1,自引:0,他引:1
The small GTPase Ran has roles in nuclear transport, mitotic spindle assembly and nuclear envelope assembly. During the past three years, it has become clear that many of these processes rely on conserved molecular mechanisms involving Ran-GTP-binding proteins of the importin-beta superfamily. Moreover, recent experimental evidence has documented the distribution of Ran-GTP within cells and supported the notion that Ran plays a central role in the spatial and temporal organization of the eukaryotic cell. 相似文献
18.
19.