首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Barley (Hordeum vulgare L.) plants were grown hydroponically with or without inorganic phosphate (Pi) in the medium. Leaves were analyzed for the intercellular and the intracellular distribution of Pi. Most of the leaf Pi was contained in mesophyll cells; Pi concentrations were low in the xylem sap, the apoplast and in the cells of the epidermis. The vacuolar concentration of Pi in mesophyll cells depended on Pi availability in the nutrient medium. After infiltrating the intercellular space of leaves with solutions containing Pi, Pi was taken up by the mesophyll at rates higher than 2.5 mol· (g fresh weight)–1 · h–1. Isolated mesophyll protoplasts did not possess a comparable capacity to take up Pi from the medium. Phosphate uptake by mesophyll protoplasts showed a biphasic dependence on Pi concentration. Uptake of Pi by Pi-deficient cells was faster than uptake by cells which had Pi stored in their vacuoles, although cytoplasmic Pi concentrations were comparable. Phosphate transport into isolated mesophyll vacuoles was dependent on their Pi content; it was stimulated by ATP. In contrast to the vacuolar Pi concentration, and despite different kinetic characteristics of the uptake systems for pi of the plasmalemma and the tonoplast, the cytoplasmic pi concentration was regulated in mesophyll cells within narrow limits under very different conditions of Pi availability in the nutrient medium, whereas vacuolar Pi concentrations varied within wide limits.Dedicated to Professor Wilhelm Simonis on the occasion of his 80th birthdayThis investigation was part of the research efforts of the Sonderforschungsbereich 176 of the Bayerische Julius-Maximilians-Universität Würzburg. We are grateful to Dr. Olaf Wolf for introducing us to the method for preparation of xylem sap of barley plants and to Mr. Yin Zuhua for fluorimetric experiments with the dye pyranine. T. Mimura is indebted to the Alexander-von-Humboldt-Stiftung for a postdoctoral research fellowship.  相似文献   

2.
Mühling KH  Läuchli A 《Planta》2000,212(1):9-15
The K+-sensitive fluorescent dye benzofuran isophthalate (PBFI) and the pH-sensitive fluorescein isothiocyanate dextran (FITC-Dextran) were used to investigate the influence of light/dark transitions on apoplastic pH and K+ concentration in intact leaves of Vicia faba L. with fluorescence ratio imaging microscopy. Illumination by red light led to an acidification in the leaf apoplast due to light-induced H+ extrusion. Similar apoplastic pH responses were found on adaxial and abaxial sides of leaves after light/dark transition. Stomatal opening resulted only in a slight pH decrease (0.2 units) in the leaf apoplast. Gradients of apoplastic pH exist in the leaf apoplast, being about 0.5–1.0 units lower in the center of the xylem veins as compared with surrounding cells. The apoplastic K+ concentration in intact leaves declined during the light period. A steeper light-induced decrease in apoplastic K+, possibly caused by higher apoplastic K+, was found on the abaxial side of leaves concentration. Simultaneous measurements of apoplastic pH and K+ demonstrated that a light-induced decline in apoplastic K+ concentration indicative of net K+ uptake into leaf cells occurs independent of apoplastic pH changes. It is suggested that the driving force that is generated by H+ extrusion into the leaf apoplast due to H+-ATPase activity is sufficient for passive K+ influx into the leaf cells. Received: 7 March 2000 / Accepted: 12 May 2000  相似文献   

3.
In higher plants sucrose plays a central roles with respect to both short-term storage and distribution of photoassimilates formed in the leaf. Sucrose is synthesized in the cytosol, transiently stored in the vacuole and exported via the apoplast. In order to elucidate the role of the different compartments with respect to sucrose metabolism, a yeast-derived invertase was directed into the cytosol and vacuole of transgenic tobacco plants. This was in addition to the targeting of yeast-derived invertase into the apoplast described previously. Vacuolar targeting was achieved by fusing an N-terminal portion (146 amino acids long) of the vacuolar protein patatin to the coding region of the mature invertase protein. Transgenic tobacco plants expressing the yeast-derived invertase in different subcellular compartments displayed dramatic phenotypic differences when compared to wild-type plants. All transgenic plants showed stunted growth accompanied by reduced root formation. Starch and soluble sugars accumulated in leaves indicating that the distribution of sucrose was impaired in all cases. Expression of cytosolic yeast invertase resulted in the accumulation of starch and soluble sugars in both very young (sink) and older (source) leaves. The leaves were curved, indicating a more rapid cell expansion or cell division at the upper side of the leaf. Light-green sectors with reduced photosynthetic activity were evenly distributed over the leaf surface. With the apoplastic and vacuolar invertase, the phenotypical changes induced only appear in older (source) leaves. The development of bleached and/or necrotic sectors was linked to the source state of a leaf. Bleaching followed the sink to source transition, starting at the rim of the leaf and moving to the base. The bleaching was paralleled by the inhibition of photosynthesis.  相似文献   

4.
It has been hypothesized that under NO3 nutrition a high apoplastic pH in leaves depresses Fe3+ reductase activity and thus the subsequent Fe2+ transport across the plasmalemma, inducing Fe chlorosis. The apoplastic pH in young green leaves of sunflower (Helianthus annuus L.) was measured by fluorescence ratio after xylem sap infiltration. It was shown that NO3 nutrition significantly increased apoplastic pH at distinct interveinal sites (pH ≥ 6.3) and was confined to about 10% of the whole interveinal leaf apoplast. These apoplastic pH increases presumably derive from NO3/proton cotransport and are supposed to be related to growing cells of a young leaf; they were not found in the case of sole NH4+ or NH4NO3 nutrition. Complementary to pH measurements, the formation of Fe2+-ferrozine from Fe3+-citrate was monitored in the xylem apoplast of intact leaves in the presence of buffers at different xylem apoplastic pH by means of image analysis. This analysis revealed that Fe3+ reduction increased with decreasing apoplastic pH, with the highest rates at around pH 5.0. In analogy to the monitoring of Fe3+ reduction in the leaf xylem, we suggest that under alkaline nutritional conditions at interveinal microsites of increased apoplastic pH, Fe3+ reduction is depressed, inducing leaf chlorosis. The apoplastic pH in the xylem vessels remained low in the still-green veins of leaves with intercostal chlorosis.  相似文献   

5.
The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.

Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  相似文献   

6.
The role of the leaf apoplast in iron (Fe) uptake into the leaf symplast is insufficiently understood, particularly in relation to the supposed inactivation of Fe in leaves caused by elevated bicarbonate in calcareous soils. It has been supposed that high bicarbonate supply to roots increases the pH of the leaf apoplast which decreases the physiological availability of Fe in leaf tissues. The study reported here has been carried out with sunflower plants grown in nutrient solution and with grapevine plants grown on calcareous soil under field conditions. The data obtained clearly show that the pH of the leaf apoplastic fluid was not affected by high bicarbonate supply in the root medium (nutrient solution and field experiments). The concentrations of total, symplastic and apoplastic Fe were decreased in chlorotic leaves of both sunflower (nutrient solution experiment) and grapevine plants in which leaf expansion was slightly inhibited (field experiment). However, in grapevine showing severe inhibition of leaf growth, total Fe concentration in chlorotic leaves was the same or even higher than in green ones, indicative to the so-called `chlorosis paradox'. The findings do not support the hypothesis of Fe inactivation in the leaf apoplast as the cause of Fe deficiency chlorosis since no increase was found in the relative amount of apoplastic Fe (% of total leaf Fe) either in the leaves of sunflower or grapevine plants. It is concluded that high bicarbonate concentration in the soil solution does not decrease Fe availability in the leaf apoplast.  相似文献   

7.
Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3/Cl uptake by roots.  相似文献   

8.
The response of plants to Pi limitation involves interplay between root uptake of Pi, adjustment of resource allocation to different plant organs and increased metabolic Pi use efficiency. To identify potentially novel, early‐responding, metabolic hallmarks of Pi limitation in crop plants, we studied the metabolic response of barley leaves over the first 7 d of Pi stress, and the relationship of primary metabolites with leaf Pi levels and leaf biomass. The abundance of leaf Pi, Tyr and shikimate were significantly different between low Pi and control plants 1 h after transfer of the plants to low Pi. Combining these data with 15N metabolic labelling, we show that over the first 48 h of Pi limitation, metabolic flux through the N assimilation and aromatic amino acid pathways is increased. We propose that together with a shift in amino acid metabolism in the chloroplast a transient restoration of the energetic and redox state of the leaf is achieved. Correlation analysis of metabolite abundances revealed a central role for major amino acids in Pi stress, appearing to modulate partitioning of soluble sugars between amino acid and carboxylate synthesis, thereby limiting leaf biomass accumulation when external Pi is low.  相似文献   

9.
The influence of phosphate deficiency on the sugar accumulation and sugar partitioning in the root cells of bean (Phaseolus vulgaris L.) was studied. Bean plants were cultured 17 - 19 d on a phosphate-sufficient and phosphate-deficient nutrient medium. Phosphate deficit in the growth medium resulted in increased sugar concentration for about 30 % in the apoplastic and cytoplasmic compartments as well as in the vacuoles of root cells. However, the distribution of sugars between apoplast and cytoplasm compartment and vacuole was not affected by decreased phosphate concentration. About 20 % of sugars were found in the apoplast and cytoplasm, about 80 % in the vacuole. Low phosphate concentration enhanced influx of exogenous 14C-sucrose into meristematic and elongation zones of root. The 14C-labelled sugar content in the root tips increased for about 60 % as compared to control plants. Phosphate deficiency increased also 14C-glucose uptake and content in the root tips. However, the amount of 14CO2 liberated during respiration of P-deficient roots (after feeding with uniformly labelled 14C-glucose) was lower than 14CO2 respired by control plants, thus a large part of accumulated sugars seems to be metabolically inactive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Abstract: Transport of ascorbate (AA) and dehydroascorbate (DHA) through the petiole into detached leaves of Lepidium sativum and other plant species via the transpiration stream, and energized uptake into leaf tissue, were measured indirectly by recording changes in membrane potential and apoplastic pH simultaneously with substrate‐stimulated respiration and transpiratory water loss. When 25 mM AA or DHA was fed to the leaves, steady state respiration at 25 °C was transiently increased by more than 50 % with AA and 70 % with DHA. Stimulation of respiration was accompanied by a transient breakdown of membrane potential followed by alkalinization of the leaf apoplast suggesting energized uptake at the expense of the transmembrane proton motive force. The average CO2/AA ratio calculated from stimulated respiration during ascorbate uptake was 0.76 ± 0.26 (n = 17). The corresponding ratio for DHA was 1.38 ± 0.28 (n = 11). Far lower CO2/substrate ratios were observed when NaCl or KCl were fed to leaves. The differences indicate either partial metabolism of AA and DHA in addition to energized transport, or less likely, higher energy requirement for transport of AA and DHA than for the inorganic salts. Maximum rates of energized AA transport into leaf tissue (deduced from maxima of extra respiration and calculated on the basis of CO2/AA = 0.76) were close to 650 nmol m‐2 leaf area s‐1, i.e. far higher than most previously reported rates of transport. When the apoplastic concentration of AA was decreased below steady state levels during infiltration/centrifugation experiments, AA was released from leaf cells into the apoplast. This suggests that AA oxidation to DHA in the apoplast (as occurs during extracellular ozone detoxification) triggers energized transport of the DHA into the symplast and simultaneously AA release from the symplast into the apoplast, perhaps together with protons in a reversal of the energized uptake process.  相似文献   

11.
Petioles of water‐sufficient intact Vicia faba L. plants were infused with 1 µm abscisic acid (ABA) to simulate the import of root‐source ABA. This protocol permitted quantitative ABA delivery, up to 300 pmol ABA over 60 min, to the leaf without ambiguities associated with perturbations in plant–water status. The ABA concentrations in whole‐leaf samples and in apoplastic sap increased with the amount infused; ABA degradation was not detected. The ABA concentration in apoplastic sap was consistent with uptake of imported ABA into the leaf symplast, but this interpretation is qualified. Our focus was quantitative cellular compartmentation of imported ABA in guard cells. Unlike when leaves are stressed, the guard‐cell symplast ABA content did not increase because of ABA infusion (P = 0·48; 3·0 ± 0·5 versus 4·0 ± 1·2 fg guard‐cell‐pair?1). However, the guard‐cell apoplast ABA content increased linearly (R2 = 0·98) from ?0·2 ± 0·5 to 3·1 ± 1·3 fg guard‐cell‐pair?1 (≈ 3·1 µm ) and was inversely related to leaf conductance (R2 = 0·82). Apparently, xylem ABA accumulates in the guard‐cell wall as a result of evaporation of the apoplast solution. This mechanism provides for integrating transpiration rate and ABA concentration in the xylem solution.  相似文献   

12.
Phosphate Transport and Apoplastic Phosphate Homeostasis in Barley Leaves   总被引:3,自引:0,他引:3  
Levels of apoplastic inorganic phosphate (Pi) in leaves andPi-transport activities of mesophyll cells were measured insitu in control and Pi-deficient plants. When detached leaveswere fed a solution that contained 10 mM Pi, the apoplasticPi levels, as measured by an infiltration method, remained almostconstant. When the leaves were immersed in pure water, the apoplasticPi level gradually decreased. With 50 mM Pi in the feeding solution,the level increased dramatically. The apoplastic Pi levels inPi-deficient leaves were somewhat, but not very much lower thanthose in controls. When the immersion medium was changed topure water 60 mm after feeding with 10 mM Pi, the apoplasticPi levels started to decrease and then returned to the initiallevel. It is suggested that intracellular Pi may be transportedback to the apoplast to maintain the apoplastic Pi levels ata constant value. Changes in cytoplasmic pH were measured during feeding of Pito the leaves by use of the pH-sensitive fluorescent dye, pyranineafter Yin et al. (l990a, b). On feeding of Pi the cytoplasmicpH decreased in Pi-deficient plants as a result of co-transportof Pi and protons in situ. After removal of Pi from the immersionmedium, the cytoplasmic pH returned to the original value. 3 Present address: Institute für Biochemische Pflanzenpathologie,GSF-München, D-8042 Neuherberg, Germany.  相似文献   

13.
A concept is suggested, which supposes that assimilates are transferred within the plant downward through phloem sieve tubes and, after entering the stem apoplast, are carried up with the ascending flow of transpiration water. After entering the apoplast of fully expanded leaves, these solutes are reexported through the phloem. Thus, a common pool of assimilates with uniform concentration is formed in the plant apoplast. According to this concept, the mechanism of assimilate demand represents a response of photosynthetic apparatus to changes in the apoplastic level of metabolites consumed by sink organs. The ratios of labeled photoassimilates differ between the apoplast and mesophyll cells. Most of the apoplastic labeled carbon is contained in sucrose, less in amino acids, and even less in hexoses. The 14C-labeling of amino acids increases and the sucrose/hexose labeling ratio decreased under conditions of enhanced nitrate supply. The well-known effect of relative inhibition of assimilate export from leaves under conditions of enhanced nitrogen supply is explained by an enhanced hydrolysis of apoplast-derived sucrose due to the increase in invertase activity, rather than by diversion of primary photosynthetic products from sucrose synthesis to other pathways required for activated growth processes in leaves. This notion is based on observations that the sucrose/hexose ratio is reduced to a greater extent in the apoplast than in the symplast. The last assumption was supported by data obtained after artificial changes in the apoplastic pH. In these experiments intact plants were placed in the atmosphere of NH3 or HCl vapors, which induced opposite changes in relative content of labeled assimilates in the apoplast and in the photosynthetic rate.  相似文献   

14.
Iron availability in plant tissues-iron chlorosis on calcareous soils   总被引:3,自引:1,他引:2  
Konrad Mengel 《Plant and Soil》1994,165(2):275-283
The article describes factors and processes which lead to Fe chlorosis (lime chlorosis) in plants grown on calcareous soils. Such soils may contain high HCO3 - concentrations in their soil solution, they are characterized by a high pH, and they rather tend to accumulate nitrate than ammonium because due to the high pH level ammonium nitrogen is rapidly nitrified and/or even may escape in form of volatile NH3. Hence in these soils plant roots may be exposed to high nitrate and high bicarbonate concentrations. Both anion species are involved in the induction of Fe chlorosis.Physiological processes involved in Fe chlorosis occur in the roots and in the leaves. Even on calcareous soils and even in plants with chlorosis the Fe concentration in the roots is several times higher than the Fe concentration in the leaves. This shows that the Fe availability in the soil is not the critical process leading to chlorosis but rather the Fe uptake from the root apoplast into the cytosol of root cells. This situation applies to dicots as well as to monocots. Iron transport across the plasmamembrane is initiated by FeIII reduction brought about by a plasmalemma located FeIII reductase. Its activity is pH dependent and at alkaline pH supposed to be much depressed. Bicarbonate present in the root apoplast will neutralize the protons pumped out of the cytosol and together with nitrate which is taken up by a H+/nitrate cotransport high pH levels are provided which hamper or even block the FeIII reduction.Frequently chlorotic leaves have higher Fe concentrations than green ones which phenomenon shows that chlorosis on calcareous soils is not only related to Fe uptake by roots and Fe translocation from the roots to the upper plant parts but also dependent on the efficiency of Fe in the leaves. It is hypothesized that also in the leaves FeIII reduction and Fe uptake from the apoplast into the cytosol is affected by nitrate and bicarbonate in an analogous way as this is the case in the roots. This assumption was confirmed by the highly significant negative correlation between the leaf apoplast pH and the degree of iron chlorosis measured as leaf chlorophyll concentration. Depressing leaf apoplast pH by simply spraying chlorotic leaves with an acid led to a regreening of the leaves.  相似文献   

15.
Concentrations of the antioxidants ascorbate and glutathione were measured in the apoplast of beech (Fagus sylvatica L.) leaves and in leaf tissue. During early leaf development, reduced ascorbate (ASC) was almost absent from the apoplast, whereas levels of oxidized ascorbate (DHA) were high. Less than 20% of the apoplastic ascorbate was reduced. ASC increased towards midsummer, reaching top levels of about 4molm?3 apoplast volume in July and August. Reduction increased to 60–75% in summer. Neither DHA reductase nor glutathione was detected in the apoplast of beech leaves. Levels of apoplastic ascorbate were compared with ambient concentrations of ozone in air. Statistical analysis indicated a significant interrelation between atmospheric ozone and apoplastic ascorbate. In midsummer of 1993, contents of DHA were increased in the apoplast when ozone concentrations were high. Apoplastic ASC was also positively correlated with ambient ozone concentrations, but with a delay of 3 to 7d. In leaf tissue, levels of ascorbate were between 17 and 21 μmolg?1 FW in summer. Except for late April and November, more than 95% of the intracellular ascorbate was reduced. Glutathione contents were lowest during the summer. Oxidation was increased in spring and autumn, when apoplastic ascorbate was also largely oxidized. Usually, 80 to 90% of the glutathione was reduced. During the summer, intracellular concentrations of oxidized glutathione (GSSG) were increased, with a delay of about 1d following periods of high ambient ozone concentrations. The transitory accumulation of GSSG may be explained by slow enzymatic regeneration of glutathione.  相似文献   

16.
Nikolic  M.  Römheld  V. 《Plant and Soil》1999,215(2):229-237
The mechanism of iron (Fe) uptake from the leaf apoplast into leaf mesophyll cells was studied to evaluate the putative Fe inactivation as a possible cause of Fe deficiency chlorosis. For this purpose, sunflower (Helianthus annuus L.) and faba bean plants (Vicia faba L.) were precultured with varied Fe and bicarbonate (HCO 3 - ) supply in nutrient solution. After 2–3 weeks preculture, FeIII reduction and 59Fe uptake by leaf discs were measured in solutions with Fe supplied as citrate or synthetic chelates in darkness. The data clearly indicate that FeIII reduction is a prerequisite for Fe uptake into leaf cells and that the Fe nutritional status of plants does not affect either process. In addition, varied supply of Fe and HCO 3 - to the root medium during preculture had no effect on pH of the xylem sap and leaf apoplastic fluid. A varied pH of the incubation solution had no significant effect on FeIII reduction and Fe uptake by leaf discs in the physiologically relevant pH range of 5.0–6.0 as measured in the apoplastic leaf fluid. It is concluded that Fe inactivation in the leaf apoplast is not a primary cause of Fe deficiency chlorosis induced by bicarbonate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Solutions of sucrose, glucose, raffinose, and stachyose were fed via the petiole to detached leaves of plant species known to transfer sugars during photosynthesis into the phloem using either the apoplastic or the symplastic pathway of phloem loading. Symplastic phloem loaders, which translocate raffinose-type oligosaccharides and sucrose in the phloem, and apoplastic plants, translocating exclusively sucrose, were selected for this study. As the sugars arrived with the transpiration stream in the leaf blade within little more than a minute, dark respiration increased. Almost simultaneously, fluorescence of a potential-indicating dye, which had been infiltrated into the leaves, indicated membrane depolarization. Another fluorescent dye used to record the apoplastic pH revealed apoplastic alkalinization that occurred with a slight lag phase after respiration and membrane depolarization responses. Occasionally, alkalinization was preceded by transient apoplastic acidification. Whereas membrane depolarization and apoplastic acidification are interpreted as initial responses of the proton motive force across the plasma membrane to the advent of sugars in the leaf apoplast, the following apoplastic alkalinization showed that sugars were taken up from the apoplast into the symplast in cotransport with protons. This was true not only for glucose and sucrose, but also for raffinose and stachyose. Similar observations were made for sugar uptake not only in leaves of plants known to export sugars by symplastic phloem loading but also of plants using the apoplastic pathway. Increased respiration during sugar uptake revealed tight coupling between respiratory ATP production and ATP consumption by proton-translocating ATPase of the plasma membrane, which exports protons into the apoplast, thereby compensating for the proton loss in the apoplast when protons are transported together with sugars into the symplast. The extent of stimulation of respiration by sugars indicated that sugar uptake was not limited to phloem tissue. Ratios of the extra CO2 released during sugar uptake to the amounts of sugars taken up were variable, but lowest values were lower than 0.2. When a ratio of 0.2 is taken as a basis to calculate rates of sugar uptake from observed maxima of sugar-dependent increases in respiration, rates of sugar uptake approached 350 nmol/(m2 leaf surface s). Sugar uptake rates were half-saturated at sugar concentrations in the feeding solutions of about 10–25 mM indicating a low in vivo affinity of sugar uptake systems for sugars.  相似文献   

18.
We studied the effects of drought on leaf conductance (g) and on the concentration of abscisic acid (ABA) in the apoplastic sap of Lupinus albus L. leaves. Withholding watering for 5d resulted in complete stomatal closure and in severe leaf water deficit. Leaf water potential fully recovered immediately after rewatering, but the aftereffect of drought on stomata persisted for 2d. ABA and sucrose were quantified in pressurized leaf xylem extrudates. We assumed that the xylem sucrose concentration is negligible and hence that the presence of sucrose in leaf extrudates indicated that they were contaminated by phloem. To eliminate this interference, the concentration of ABA in leaf apoplast was estimated by extrapolation to zero sucrose concentration, using the regression between ABA and sucrose concentrations. The estimated apoplastic ABA concentration increased by 100-fold with soil drying and did not return to pre-stress values immediately following rewatering. g was closely related to the concentration of ABA in leaf apoplast. Furthermore, the feeding of exogenous ABA to leaves detached from well-watered plants brought about the same degree of depression in g as resulted from the drought-induced increase in ABA concentration. We therefore conclude that the observed changes in the concentration of ABA in leaf apoplast were quantitatively adequate to explain drought-induced stomatal closure and the delay in stomatal reopening following rewatering.  相似文献   

19.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   

20.
Homeostasis and Transport of Inorganic Phosphate in Plants   总被引:16,自引:0,他引:16  
In this review, homeostasis of inorganic phosphate (Pi) in plantsis discussed in terms of membrane transport of Pi. Phosphatehomeostasis is observed in plant systems at various levels.The cytoplasmic level of Pi is kept almost constant by exploitationof the vacuole as a reservoir of Pi. The vacuole also seemsto maintain the apoplastic level of Pi at a quasi-constant level.During Pi deficiency, Pi is re-translocated from the older tothe younger leaves. The concentration of Pi in young leaves,thus, is kept at a higher level without a supply of Pi fromthe root. The phenomenon can be referred to as leaf-level Pihomeostasis. All these phenomena are related to membrane Pitransport activities. Pi uptake activities of both the plasmamembrane and the tonoplast change in response to the supplyof Pi. Pi transport across the plasma membrane is controlledby the activities of both the Pi transporter and the H+ pump,the activity of which is modulated by Pi itself. 1Recipient of the JSPP Young Investigator Award, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号