首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agents that elevate intracellular cAMP levels are required for growth of many cell types in culture including normal rat mammary epithelial (RME) cells. To determine if the intracellular levels of cAMP that result from stimulation by agents such as cholera toxin (CT) or prostaglandin E-1 (PGE-1) are within the physiological range, cAMP levels were determined in RME cells growing in primary culture and compared to levels measured in freshly isolated mammary epithelium. The results indicate that the cAMP levels of mammary epithelial organoids obtained from 45-day-old virgin rats are 4 to 6 pmol/106 cells. Growth of RME cells in primary culture in the presence of CT results in cAMP levels of approximately 15 to 20 pmol/106 cells early in culture when cells are proliferating rapidly. As cells approach confluence, cAMP concentrations decrease to levels observed in fresh organoids. CT-stimulated cAMP levels appear to be within the range of those found in pregnant mammary epithelium in vivo. Growth of RME cells in medium supplemented with PGE-1 instead of CT results in cAMP levels equivalent to those found in fresh mammary epithelial organoids and under these conditions the growth rate is approximately half that found in CT-stimulated cells. These results indicate cAMP to be a positive regulator of cell growth in vivo at levels that are within the physiological range.  相似文献   

2.
These experiments were aimed at using a recently developed serum-free culture system for growth of normal rat mammary epithelial (RME) cells in vitro to examine the interactions of specific hormones and growth factors on the proliferative potential of these cells. RME cells were obtained by enzymatic dissociation of mammary tissues of Lewis rats. Primary cultures were started by plating 2 X 10(5) RME cells per 60-mm type I collagen-coated tissue culture dish. Cultures were maintained in a basal medium that consisted of Ham's F-12 medium supplemented with bovine serum albumin (BSA), ethanolamine (EA), and transferrin (Tf), which, by itself, did not support RME cell proliferation. Insulin (I), hydrocortisone (HC), and epidermal growth factor (EGF), when added to the basal medium interacted synergistically to stimulate RME cell proliferation, but this effect was dependent on the additional presence of cholera toxin (CT). Under these conditions a greater-than-tenfold increase in cell number over a 10-day culture period was obtained. Insulin could be replaced by physiological levels of insulin-like growth factor-I (IGF-I). CT could be replaced by other agents that elevate intracellular levels of cyclic adenosine 3':5' monophosphate (cAMP) such as dibutyryl-cAMP (db-cAMP), prostaglandin E1 (PGE-1), and/or isobutylmethylxanthine (IBMX). Prolactin (M) or progesterone (P) potentiated the effect of I, HC, EGF, and CT, resulting in an additional twofold increase in cell number over that found in their absence. However, addition of both hormones was no more effective than either one alone. Furthermore, addition of M or P in the absence of EGF had no effect on RME cell proliferation. Addition of 17-B-estradiol (E2) to the I-, HC-, EGF-, and CT-containing medium also resulted in enhanced RME cell proliferation. These results point to a number of hormone and growth factor interactions that influence the proliferation of normal RME cells in vitro.  相似文献   

3.
Multicellular organoids of mouse mammary epithelium were established in culture either upon or within collagen matrices of various concentrations. Growth and tubule morphogenesis within the matrices were dependent upon the concentration of collagen, both being maximal in gels composed of 2 mg collagen/ml gel. Growth was more extensive in cultures established in gel than on gel especially at intermediate concentrations of collagen, with cell growth on gel seemingly independent of collagen concentration. Our results demonstrate that local collagen concentration can significantly affect epithelial cell growth and morphology.  相似文献   

4.
We have examined conditioned medium (CM) from cultures of normal rat mammary epithelial (RME) cells for growth factor activity on fresh RME cell cultures. RME cell-derived CM contained potent growth inhibitory activity toward fresh RME cell cultures when the medium was acidified by dialysis against 1% acetic acid prior to concentration. Dialysis of the CM at neutral pH resulted in CM that had growth stimulatory activity and no inhibitory activity. The acid-activated growth inhibitor was heat and acid stable, protease sensitive, and eluted from a Bio-Gel p60 column with a peak of activity in the 28 kDa range. Incubation of the acidified-concentrated CM with neutralizing antiserum (affinity purified IgG) against transforming growth factor (TGF)-beta completely abolished the inhibitory activity of the CM. Furthermore, RME cell growth in the presence of the growth inhibitor plus TGF-beta antiserum was greater than that observed in growth medium alone. Subsequent experiments demonstrated that addition of TGF-beta antiserum alone to serum-free medium enhanced RME cell growth, whereas addition of nonimmune IgG was without effect even at 25-fold higher concentrations. Zymographic analysis of RME-CM revealed the presence of plasminogen activator proteases that may mediate the partial activation of the latent growth factor. These results indicate that normal RME cells secrete a latent TGF-beta-like growth factor into conditioned medium. Furthermore, the results indicate that some of the latent growth factor is activated in situ and contributes to the growth potential of the cells in primary culture in an autocrine manner.  相似文献   

5.
A simple dissociation procedure and the collagen gel culture system have been utilized to determine the effects of mammogenic hormones and epidermal growth factor (EGF) on the proliferation of normal rat mammary epithelial (RME) cells in serum-free culture. Epithelial fragments, isolated from normal virgin F344 rat mammary glands by enzyme digestion followed by Percoll density gradient centrifugation, were embedded within a rat tail collagen matrix. A three- to four-fold increase in cell number was observed when ovine prolactin (PRL) and progesterone (P) were present in the basal medium during 7 days of culture. Mouse EGF stimulated one cell doubling during the same culture period. Isolated mammary organoids produced a 'stellate' type colony when PRL + P were present in the culture medium. These colonies were composed of small, tightly packed cuboidal cells. The addition of EGF to the basal medium produced a diffuse 'basket' type colony which was composed of large, elongate cells. When the complete hormonal and growth factor combination (PRL + P + EGF) was present, a 'mixed' type colony was observed which contained both the large and small epithelial cell types. Immunocytochemical analysis revealed that both the cuboidal and elongate cells present in the two colony types stained with antibodies to keratin indicating that these cells were epithelial in nature. The small cuboidal cells also expressed thioesterase II and alpha-lactalbumin, both specific for secretory mammary epithelial cells. The large, elongate cell type, however, was positive for actin but did not stain for either secretory epithelial specific marker. The results reported here suggest that normal rat mammary tissue may contain two epithelial populations, one which responds to PRL + P and the other which responds to EGF.  相似文献   

6.
A serum-free primary culture system has been developed which allows for three-dimensional growth and differentiation of normal human fetal mammary epithelial cells within an extracellular matrix preparation. Human fetal mammary epithelial cells were isolated from the mammary glands of human female fetuses, 17 to 39 weeks-old. The "organoids" were embedded within a reconstituted basement membrane matrix prepared from the Engelbreth-Holm-Swarm (EHS) sarcoma according to the method of Hahm and Ip. "Organoids" were grown in either serum-free medium or in medium with fetal calf serum (FCS). The "organoid" proliferated over a 2 to 3 weeks culture period and remained viable for 1 or 2 months within the basement membrane matrix in serum free medium. Several types of colonies were observed; including alveolar-like budding clusters obtained from cultures of mammary gland from fetuses of over 20 weeks age, units with ductule-like projections and stellate-type colonies. Cell proliferation was dependent on the culture medium (with FCS no proliferation was obtained) and on the substratum (without matrix, significantly less growth and development occurred). These types of colonies are obtained when a glandular differentiation of cells budding from the malpighian epithelium is observed. Light microscopic and transmission electron microscopic studies were undertaken at the time of culture. This unique system using normal fetal mammary epithelial cells thus provides a model in which the regulation of human mammary development can be investigated.  相似文献   

7.
When mesenchyme from fetal mammary or salivary gland is implanted into adult mouse mammary gland, adjacent epithelium responds with intense hyperplasia. The hyperplastic cells are more vulnerable than are non-stimulated cells to transformation in vivo by a chemical carcinogen or by mammary tumor virus. This system provides a potentially useful model for determining how stroma contributes to mammary tumorigenesis. We have developed co-culture systems and used them to investigate in more detail the nature of the signal produced by the mesenchyme cells. Monolayers of mesenchyme cells were prepared on tissue-culture wells. The mesenchyme cells were trapped on the surface by a thin overlay of agarose. Primary mammary epithelial cells were cultured atop this barrier layer, either as organoids in collagen gels for assessment of anchorage-dependent growth, or as single-cell dispersions in soft agarose for assessment of anchorage-independent growth. Our procedures for assay of anchorage-independent growth allow us for the first time to detect and measure this transformation-defining characteristic in non-immortalized mammary epithelial cells in primary culture. Fetal mammary fat pad precursor tissue and fetal salivary mesenchyme both stimulated anchorage-dependent growth of mammary epithelium, with cell number increasing as much as fifteenfold during a 6-day culture period. These same fetal tissues also stimulated anchorage-independent growth of the mammary epithelial cells, with colony-forming efficiencies of up to 40% in co-cultures with salivary mesenchyme. No colonies formed in the absence of mesenchyme. Cells of colonies contained keratin, which indicates that the colonies grew from epithelial cells and not from a contaminant of another cell type. When co-cultured epithelial cells were subsequently re-cultured in the absence of mesenchyme, they lost their ability to grow independent of anchorage. No colonies grew in co-cultures with fetal cells from heart, kidney, or lung, which is consistent with the lack of stimulation by these tissues in the mammary gland in vivo. A tumor promoter, 12-O-tetradecanoylphorbol acetate (TPA), also caused anchorage-independent growth of the dispersed mammary epithelial cells. Culture medium conditioned by primary or early-passage salivary mesenchyme cells was capable of stimulating growth under both anchorage-dependent and anchorage-independent conditions, confirming that these effects are mediated by a paracrine factor. The results indicate that stimulatory fetal mesenchymes produce soluble molecules that act analogously to transforming growth factors.  相似文献   

8.
We have recently described a primary culture system which allows for extensive proliferation and functional differentiation of immature mammary epithelial cells. Herein, these findings are extended to demonstrate that a distinct pattern of ductal and alveolar morphogenesis can be induced within the mammary organoids isolated from virgin female rats and cultured within an Engelbreth-Holm-Swarm sarcoma-derived reconstituted basement membrane under defined serum-free conditions. The lobular and multilobular organoids that emerged resemble the alveoli of the mammary gland in gross form, multicellular architecture, and cytologic and functional differentiation, while the ductal organoids expressed characteristics typical of mammary gland ducts in vivo. The epithelial cells within the alveolar- and duct-like organoids displayed the capability of secreting two morphologically distinct milk products, casein and lipid, into the luminal compartment. The expression of histiotypic morphogenesis and mammary-specific functional differentiation by the cultured mammary organoids proceeded in the absence of a morphologically distinct basal lamina. We illustrate that development highly reminiscent of that which naturally occurs in the mammary gland in vivo can be induced and supported in vitro under defined serum-free conditions. In addition, the methodologies are available to simultaneously monitor mammary organoid morphogenesis, growth, and functional differentiation. This system should serve as a unique model in which the regulation of branching morphogenesis, development, gene expression, and transformation can be examined.  相似文献   

9.
Normal mouse mammary epithelial cells, isolated from female Balb/c mice, were cultured as multicellular organoids either on or within collagen gel matrices. Cultures were maintained in either serum-free control medium or the same medium conditioned by mammary adipose tissue. A significant proliferative response above that observed in control cultures (2.5-3.5 fold increase) was induced by conditioned medium derived from either mammary fat-pad explants or isolated adipocytes. In addition, scanning electron microscopy revealed epithelial morphology to be preserved in a more in vivo-like state in the conditioned medium. We conclude that diffusible factors derived from the mouse mammary fat pad influence the proliferative activity and morphology of mammary epithelial cells in culture.  相似文献   

10.
Disruption of circadian rhythms is a risk factor for several human gastrointestinal (GI) diseases, ranging from diarrhea to ulcers to cancer. Four-dimensional tissue culture models that faithfully mimic the circadian clock of the GI epithelium would provide an invaluable tool to understand circadian regulation of GI health and disease. We hypothesized that rhythmicity of a key circadian component, PERIOD2 (PER2), would diminish along a continuum from ex vivo intestinal organoids (epithelial ‘miniguts’), nontransformed mouse small intestinal epithelial (MSIE) cells and transformed human colorectal adenocarcinoma (Caco-2) cells. Here, we show that bioluminescent jejunal explants from PERIOD2::LUCIFERASE (PER2::LUC) mice displayed robust circadian rhythms for >72 hours post-excision. Circadian rhythms in primary or passaged PER2::LUC jejunal organoids were similarly robust; they also synchronized upon serum shock and persisted beyond 2 weeks in culture. Remarkably, unshocked organoids autonomously synchronized rhythms within 12 hours of recording. The onset of this autonomous synchronization was slowed by >2 hours in the presence of the glucocorticoid receptor antagonist RU486 (20 μM). Doubling standard concentrations of the organoid growth factors EGF, Noggin and R-spondin enhanced PER2 oscillations, whereas subtraction of these factors individually at 24 hours following serum shock produced no detectable effects on PER2 oscillations. Growth factor pulses induced modest phase delays in unshocked, but not serum-shocked, organoids. Circadian oscillations of PER2::LUC bioluminescence aligned with Per2 mRNA expression upon analysis using quantitative PCR. Concordant findings of robust circadian rhythms in bioluminescent jejunal explants and organoids provide further evidence for a peripheral clock that is intrinsic to the intestinal epithelium. The rhythmic and organotypic features of organoids should offer unprecedented advantages as a resource for elucidating the role of circadian rhythms in GI stem cell dynamics, epithelial homeostasis and disease.KEY WORDS: Circadian rhythm, Intestinal organoid, PERIOD2, R-spondin, RU486  相似文献   

11.
嗅上皮接收和传导气味信号是嗅觉系统的重要组成部分。嗅上皮的损伤在通常情况下可自发恢复,但特定疾病或衰老造成的嗅上皮损伤会引起嗅觉功能减退和嗅觉障碍。嗅上皮主要由基底细胞、支持细胞以及嗅感觉神经元组成。为了在体外建立包含多种细胞类型的嗅上皮类器官,本研究采用3D细胞培养技术,通过筛选小分子药物,构建了包含多种细胞类型的嗅上皮类器官模型,包含水平基底样细胞、球形基底样细胞、支持样细胞和嗅感觉神经元样细胞多种细胞类型。类器官培养体系中多种生长因子和小分子化合物在细胞增殖速度、细胞组成以及不同细胞类型标志基因的表达水平等方面对类器官产生影响。Wnt信号通路激活剂CHIR-99021能够提高嗅上皮类器官的成克隆率和增殖速度且有利于提高嗅上皮类器官中嗅感觉神经元样细胞标志基因的表达水平;培养体系的任一因子均能提高类器官中cKit阳性的球形基底样细胞克隆比例;表皮生长因子(epidermal growth factor,EGF)和维生素C均有利于类器官中水平基底样细胞标志基因的表达。本研究建立的嗅上皮类器官系统模拟了嗅上皮干细胞分化产生多种嗅上皮细胞类型的过程,为研究嗅上皮组织损伤再生、嗅觉障碍病理...  相似文献   

12.
Summary A monolayer culture system has recently been developed for the extended growth and serial passage of normal rat mammary epithelial (RME) cells. In this system the cells undergo greater than 20 population doublings when grown on type I collagen-coated tissue culture dishes in Ham's F12 medium supplemented with insulin, hydrocortisone, epidermal growth factor, prolactin, progesterone, cholera toxin, and 5% fetal bovine serum (FBS). The purpose of the present studies was to define additional growth factors that would allow equivalent RME cell proliferation in serum-free medium. Ethanolamine (EA) was effective at reducing the FBS requirements for RME cell proliferation and at its optimum concentration did so by greater than 20-fold. Even with optimum levels of EA there was essentially no cell proliferation in the absence of FBS. However, addition of bovine serum albumin (BSA) to the hormone, growth factor, and EA-supplemented medium resulted in substantial proliferation in the absence of serum, and the further addition of transferrin (T) potentiated this effect. Thus, in this culture system, replacement of FBS with EA, BSA, and T resulted in RME cell proliferation in primary culture which was equivalent to that obtained in the 5% FBS-containing medium. This work was supported by grant RR-05529 from the Division of Research Resources, National Institutes of Health, Bethesda, MD, and by Public Health Service grant CA40064-01 from the National Cancer Institute, Bethesda, MD.  相似文献   

13.
The epithelium of the gastrointestinal tract is constantly renewed as it turns over. This process is triggered by the proliferation of intestinal stem cells (ISCs) and progeny that progressively migrate and differentiate toward the tip of the villi. These processes, essential for gastrointestinal homeostasis, have been extensively studied using multiple approaches. Ex vivo technologies, especially primary cell cultures have proven to be promising for understanding intestinal epithelial functions. A long-term primary culture system for mouse intestinal crypts has been established to generate 3-dimensional epithelial organoids. These epithelial structures contain crypt- and villus-like domains reminiscent of normal gut epithelium. Commonly, termed “enteroids” when derived from small intestine and “colonoids” when derived from colon, they are different from organoids that also contain mesenchyme tissue. Additionally, these enteroids/colonoids continuously produce all cell types found normally within the intestinal epithelium. This in vitro organ-like culture system is rapidly becoming the new gold standard for investigation of intestinal stem cell biology and epithelial cell physiology. This technology has been recently transferred to the study of human gut. The establishment of human derived epithelial enteroids and colonoids from small intestine and colon has been possible through the utilization of specific culture media that allow their growth and maintenance over time. Here, we describe a method to establish a small intestinal and colon crypt-derived system from human whole tissue or biopsies. We emphasize the culture modalities that are essential for the successful growth and maintenance of human enteroids and colonoids.  相似文献   

14.
15.
16.
The present study was carried out to examine whether activation of adenosine receptors by adenosine analogues will affect casein production by mouse mammary epithelial cells. The morphogenesis and functions of epithelial tissue in the mammary gland are influenced by their surrounding adipocytes. Adipocytes are known to release adenosine into the extracellular fluid which can modulate cyclic-AMP levels in surrounding cells through binding to their adenosine receptors. To examine a possible paracrine effect of adenosine, the modulation of casein production in mammary explant culture and mammary epithelial cell (MEC) culture by adenosine receptor agonists has been investigated. We have observed that activation of the A1-adenosine receptor subtype in mammary tissue by an adenosine analogue (—)N6-(R-phenyl-isopropyl)-adenosine (PIA) raised cAMP levels. PIA and another adenosine receptor agonist, isobutylmethylxanthine (IBMX), inhibited casein accumulation both in explants and in MEC cultures in the presence of lactogenic hormones, which suggests that PIA or adenosine can act directly on the epithelial cells. This inhibition does not appear to be caused by elevation of cAMP levels or phosphodiesterase activity. The inhibition of intracellular casein accumulation by PIA and IBMX in explant cultures can be reversed via treatment of pertussis toxin which is known to ADP-ribosylate GTP-binding Gαi-proteins, indicating that a Gi-protein-dependent pathway may be involved in this inhibition. The results also suggest that local accumulation of adenosine in the extracellular fluids of mammary glands is likely to inhibit the lactogenic response of mammary epithelial cells. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.  相似文献   

18.
Mammary epithelial cells were isolated from mid-pregnant BALB/c mice, grown within collagen gels and maintained on DME/F12 (1:1) media containing 10% bovine calf serum and 10 μ/ml insulin. Initial time-course and dose-response studies showed that epidermal growth factor (EGF)-induced autophosphorylation of the EGF-receptor (EGF-R) in these cells was maximal 5 min after exposure to 75 ng/ml EGF. Mammary epithelial cells displaying little or no growth during their first 2 days in primary culture cells were found to contain low levels of EGF-R. However, EGF-induced autophosphorylation of the EGF-R in these cells was extremely intense. Subsequent studies demonstrated that during the proliferative and plateau phases of growth, EGF-R levels progressively increased, while conversely EGF-induced autophosphorylation of the EGF-R decreased over time in primary culture. These results demonstrate that EGF-R levels and autophosphorylation do not show a direct correlation with mammary epithelial cell mitogen-responsiveness. Intense EGF-R autophosphorylation appears to be required for initiating growth, but sustained mammary epithelial cell proliferation occurs when EGF-R autophosphorylation is low. This inverse relationship between EGF-R levels and autophosphorylation may reflect changes in receptor affinity and function during the various phases of mammary epithelial cell growth in primary culture.  相似文献   

19.
The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.  相似文献   

20.
The growth promoting effects of lithium and insulin on cultures of mammary gland epithelium and CZF mouse mammary tumor cells were investigated. Lithium chloride exerts a 450-fold increase in the rate of DNA synthesis in mammary epithelium from mid-pregnant mice in organ culture or monolayer culture. There is an increase in both the percentage of cells initiating DNA synthesis and the net accumulation of DNA. The most effective lithium concentration is 10 mM, and the maximally effective rate of stimulation is reached 48 hours after addition. The magnitude of response to lithium varies with the physiological state of the mammary epithelial cell donor: epithelium from non-pregnant or lactating mice is less responsive than that from mid-pregnant mice. In combination, insulin and lithium produce either a synergistic or an additive effect on the growth of epithelium dependent upon the physiological state of the donor animal. Lithium also promotes the growth of mammary tumor cells in the absence of serum or other mitogens. The action of lithium on DNA synthesis appears to be a direct effect on the epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号