首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in a Cu, Zn-superoxide dismutase (SOD1) cause motor neuron death in human familial amyotrophic lateral sclerosis (FALS) and its mouse model, suggesting that mutant SOD1 has a toxic effect on motor neurons. However, the question of how the toxic function is gained has not been answered. Here, we report that the mutant SOD1s linked to FALS, but not wild-type SOD1, aggregated in association with the endoplasmic reticulum (ER) and induced ER stress in the cDNA-transfected COS7 cells. These cells showed an aberrant intracellular localization of mitochondria and microtubules, which might lead to a functional disturbance of the cells. Motor neurons of the spinal cord in transgenic mice with a FALS-linked mutant SOD1 also showed a marked increase of GRP78/BiP, an ER-resident chaperone, just before the onset of motor symptoms. These data suggest that ER stress is involved in the pathogenesis of FALS with an SOD1 mutation.  相似文献   

2.
Abstract Dorfin is a RING-finger type ubiquitin ligase for mutant superoxide dismutase 1 (SOD1) that enhances its degradation. Mutant SOD1s cause familial amyotrophic lateral sclerosis (FALS) through the gain of unelucidated toxic properties. We previously showed that the accumulation of mutant SOD1 in the mitochondria triggered the release of cytochrome c, followed by the activation of the caspase cascade and induction of neuronal cell death. In the present study, therefore, we investigated whether Dorfin can modulate the level of mutant SOD1 in the mitochondria and subsequent caspase activation. We showed that Dorfin significantly reduced the amount of mutant SOD1 in the mitochondria, the release of cytochrome c and the activation of the following caspase cascade, thereby preventing eventual neuronal cell death in a neuronal cell model of FALS. These results suggest that reducing the accumulation of mutant SOD1 in the mitochondria may be a new therapeutic strategy for mutant SOD1-associated FALS, and that Dorfin may play a significant role in this.  相似文献   

3.
ER stress and UPR in familial amyotrophic lateral sclerosis   总被引:2,自引:0,他引:2  
The primary mechanism by which mutations in Cu, Zn-superoxide dismutase (SOD1) contribute to progressive motor neuron loss in familial amyotrophic lateral sclerosis (FALS) remains unknown. Misfolded protein aggregates, ubiquitin-proteasome system impairment and neuronal apoptosis mediated by death receptor or mitochondrial-dependent pathways are implicated in mutant SOD1-induced toxicity. Recent evidence from cellular and transgenic rodent models of FALS proposes activation of a third apoptotic pathway linked to sustained endoplasmic reticulum (ER) stress. Here, we review the emerging role of ER stress and the unfolded protein response (UPR) in the pathogenesis of mutant SOD1-linked FALS. The UPR observed in FALS rodents is described which encompasses induction of key ER-resident chaperones during presymptomatic disease, leading to activation of stress transducers and pro-apoptotic molecules by late stage disease. Importantly, mutant SOD1 co-aggregates with UPR components and recruits to the ER, suggesting a direct adverse effect on ER function. By contrast, the opposing neuroprotective effects of wild-type SOD1 overexpression on UPR signalling are also highlighted. In addition, the potential impact of neuronal Golgi apparatus (GA) fragmentation and subsequent disturbances in intracellular protein trafficking on motor neuron survival in FALS is also discussed. We propose that ER stress and UPR may be coupled to GA dysfunction in mutant SOD1-mediated toxicity, promoting ER-initiated cell death signalling in FALS.  相似文献   

4.
Mutations in Cu,Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (ALS). It has been proposed that neuronal cell death might occur due to inappropriately increased Cu interaction with mutant SOD1. Using Cu immobilized metal-affinity chromatography (IMAC), we showed that mutant SOD1 (A4V, G85R, and G93A) expressed in transfected COS7 cells, transgenic mouse spinal cord tissue, and transformed yeast possessed higher affinity for Cu than wild-type SOD1. Serine substitution for cysteine at the Cys111 residue in mutant SOD1 abolished the Cu interaction on IMAC. C111S substitution reversed the accelerated degradation of mutant SOD1 in transfected cells, suggesting that the Cys111 residue is critical for the stability of mutant SOD1. Aberrant Cu binding at the Cys111 residue may be a significant factor in altering mutant SOD1 behavior and may explain the benefit of controlling Cu access to mutant SOD1 in models of familial ALS.  相似文献   

5.
Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause approximately 20% of familial cases of amyotrophic lateral sclerosis (fALS). Accumulating evidence indicates that a gain of toxic function of mutant SOD1 proteins is the cause of the disease. It has also been shown that the ubiquitin-proteasome pathway plays a role in the clearance and toxicity of mutant SOD1. In this study, we investigated the degradation pathways of wild-type and mutant SOD1 in neuronal and nonneuronal cells. We provide here the first evidence that wild-type and mutant SOD1 are degraded by macroautophagy as well as by the proteasome. Based on experiments with inhibitors of these degradation pathways, the contribution of macroautophagy to mutant SOD1 clearance is comparable with that of the proteasome pathway. Using assays that measure cell viability and cell death, we observed that under conditions where expression of mutant SOD1 alone does not induce toxicity, macroautophagy inhibition induced mutant SOD1-mediated cell death, indicating that macroautophagy reduces the toxicity of mutant SOD1 proteins. We therefore propose that both macroautophagy and the proteasome are important for the reduction of mutant SOD1-mediated neurotoxicity in fALS. Inhibition of macroautophagy also increased SOD1 levels in detergent-soluble and -insoluble fractions, suggesting that both detergent-soluble and -insoluble SOD1 are degraded by macroautophagy. These findings may provide further insights into the mechanisms of pathogenesis of fALS.  相似文献   

6.
Aggregation of misfolded protein and resultant intracellular inclusion body formation are common hallmarks of mutant superoxide dismutase (mSOD1)-linked familial amyotrophic lateral sclerosis (FALS) and have been associated with the selective neuronal death. Protein disulfide isomerase (PDI) represents a family of enzymatic chaperones that can fold nascent and aberrant proteins in the endoplasmic reticulum (ER) lumen. Recently, our group found that S-nitrosylated PDI could contribute to protein misfolding and subsequent neuronal cell death. However, the exact role of PDI in the pathogenesis of ALS remains unclear. In this study, we propose that PDI attenuates aggregation of mutant/misfolded SOD1 and resultant neurotoxicity associated with ER stress. ER stress resulting in PDI dysfunction therefore provides a mechanistic link between deficits in molecular chaperones, accumulation of misfolded proteins, and neuronal death in neurodegenerative diseases. In contrast, S-nitrosylation of PDI inhibits its activity, increases mSOD1 aggregation, and increases neuronal cell death. Specifically, our data show that S-nitrosylation abrogates PDI-mediated attenuation of neuronal cell death triggered by thapsigargin. Biotin switch assays demonstrate S-nitrosylated PDI both in the spinal cords of SOD1 (G93A) mice and human patients with sporadic ALS. Therefore, denitrosylation of PDI may have therapeutic implications. Taken together, our results suggest a novel strategy involving PDI as a therapy to prevent mSOD1 aggregation and neuronal degeneration. Moreover, the data demonstrate that inactivation of PDI by S-nitrosylation occurs in both mSOD1-linked and sporadic forms of ALS in humans as well as mice.  相似文献   

7.
8.
A growing body of evidence suggests that mitochondrial dysfunctions play a crucial role in the pathogenesis of various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting both upper and lower motor neurons. Although ALS is predominantly a sporadic disease, approximately 10% of cases are familial. The most frequent familial form is caused by mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1). A dominant toxic gain of function of mutant SOD1 has been considered as the cause of the disease and mitochondria are thought to be key players in the pathogenesis. However, the exact nature of the link between mutant SOD1 and mitochondrial dysfunctions remains to be established. Here, we briefly review the evidence for mitochondrial dysfunctions in familial ALS and discuss a possible link between mutant SOD1 and mitochondrial dysfunction.  相似文献   

9.
Mutations in CuZn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) and are found in 6% of ALS patients. Non-native and aggregation-prone forms of mutant SOD1s are thought to trigger the disease. Two sets of novel antibodies, raised in rabbits and chicken, against peptides spaced along the human SOD1 sequence, were by enzyme-linked immunosorbent assay and an immunocapture method shown to be specific for denatured SOD1. These were used to examine SOD1 in spinal cords of ALS patients lacking mutations in the enzyme. Small granular SOD1-immunoreactive inclusions were found in spinal motoneurons of all 37 sporadic and familial ALS patients studied, but only sparsely in 3 of 28 neurodegenerative and 2 of 19 non-neurological control patients. The granular inclusions were by confocal microscopy found to partly colocalize with markers for lysosomes but not with inclusions containing TAR DNA binding protein-43, ubiquitin or markers for endoplasmic reticulum, autophagosomes or mitochondria. Granular inclusions were also found in carriers of SOD1 mutations and in spinobulbar muscular atrophy (SBMA) patients and they were the major type of inclusion detected in ALS patients homozygous for the wild type-like D90A mutation. The findings suggest that SOD1 may be involved in ALS pathogenesis in patients lacking mutations in the enzyme.  相似文献   

10.
The appearance of protein aggregates is a characteristic of protein misfolding disorders including familial amyotrophic lateral sclerosis, a neurodegenerative disease caused by inherited mutations in Cu/Zn superoxide dismutase 1 (SOD1). Here, we use live cell imaging of neuronal and nonneuronal cells to show that SOD1 mutants (G85R and G93A) form an aggregate structure consisting of immobile scaffolds, through which noninteracting cellular proteins can diffuse. Hsp70 transiently interacts, in a chaperone activity-dependent manner, with these mutant SOD1 aggregate structures. In contrast, the proteasome is sequestered within the aggregate structure, an event associated with decreased degradation of a proteasomal substrate. Through the use of time-lapse microscopy of individual cells, we show that nearly all (90%) aggregate-containing cells express higher levels of mutant SOD1 and died within 48 h, whereas 70% of cells expressing a soluble mutant SOD1 survived. Our results demonstrate that SOD1 G85R and G93A mutants form a distinct class of aggregate structures in cells destined for neuronal cell death.  相似文献   

11.
Mitochondrial dysfunction and its role in motor neuron degeneration in ALS   总被引:6,自引:0,他引:6  
Manfredi G  Xu Z 《Mitochondrion》2005,5(2):77-87
Mitochondria play a pivotal role in many metabolic and apoptotic pathways that regulate the life and death of cells. Accumulating evidence suggests that mitochondrial dysfunction is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Mitochondrial dysfunction may cause motor neuron death by predisposing them to calcium-mediated excitotoxicity, by increasing generation of reactive oxygen species, and by initiating the intrinsic apoptotic pathway. Morphological and biochemical mitochondrial abnormalities have been described in sporadic human ALS cases, but the implications of these findings in terminally ill individuals or in post-mortem tissues are difficult to decipher. However, remarkable mitochondrial abnormalities have also been identified in transgenic mouse models of familial ALS expressing mutant Cu, Zn superoxide dismutase (SOD1). Detailed studies in these mouse models indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting that mitochondrial dysfunction may be causally involved in the pathogenesis of ALS. Although the mechanisms whereby mutant SOD1 damages mitochondria remain to be fully understood, the finding that a portion of mutant SOD1 is localized in mitochondria, where it forms aberrant aggregates and protein interactions, has opened a number of avenues of investigation. The future challenges are to devise models to better understand the effects of mutant SOD1 in mitochondria and the relative contribution of mitochondrial dysfunction to the pathogenesis of ALS, as well as to identify therapeutic approaches that target mitochondrial dysfunction and its consequences.  相似文献   

12.
Endoplasmic reticulum (ER) stress is an important pathway to cell death in amyotrophic lateral sclerosis (ALS). We previously demonstrated that ER stress is linked to neurotoxicity associated with formation of inclusions of mutant Cu,Zn-superoxide dismutase 1 (SOD1). Cells bearing mutant inclusions undergo mitochondrial apoptotic signalling. Here, we demonstrate that the BH3-only protein, Bim, is a direct link between ER stress and mitochondrial apoptosis. In the murine neuroblastoma cell line, Neuro2a, bearing mutant SOD1 inclusions, indicators of both ER stress and apoptosis are expressed. Bim knockdown by siRNA significantly reduced nuclear apoptotic features in these inclusion-bearing cells (but did not affect the proportion of cells overall that bear inclusions). Further, both Bax recruitment to mitochondria and cytochrome c redistribution were also decreased under Bim-depletion conditions. However, upregulation of CHOP, a marker of ER stress, was not reduced by Bim knockdown. Significantly, knockdown of CHOP by siRNA reduced the extent of apoptosis in cells bearing mutant SOD1 inclusions. These sequential links between ER stress, CHOP upregulation, and Bim activation of mitochondrial apoptotic signalling indicate a clear pathway to cell death mediated by mutant SOD1.  相似文献   

13.
Retrograde axonal transport and motor neuron disease   总被引:2,自引:0,他引:2  
Transport of material between extensive neuronal processes and the cell body is crucial for neuronal function and survival. Growing evidence shows that deficits in axonal transport contribute to the pathogenesis of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we review recent data indicating that defects in dynein-mediated retrograde axonal transport are involved in ALS etiology. We discuss how mutant copper-zinc superoxide dismutase (SOD1) and an aberrant interaction between mutant SOD1 and dynein could perturb retrograde transport of neurotrophic factors and mitochondria. A possible contribution of axonal transport to the aggregation and degradation processes of mutant SOD1 is also reviewed. We further consider how the interference with axonal transport and protein turnover by mutant SOD1 could influence the function and viability of motor neurons in ALS.  相似文献   

14.
Dominant mutations in the Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. The molecular mechanism underlying the toxic gain-of-function of mutant hSOD1s remains uncertain. Several lines of evidence suggest that toxicity to motor neurons requires damage to non-neuronal cells. In line with this observation, primary astrocytes isolated from mutant hSOD1 over-expressing rodents induce motor neuron death in co-culture. Mitochondrial alterations have been documented in both neuronal and glial cells from ALS patients as well as in ALS-animal models. In addition, mitochondrial dysfunction and increased oxidative stress have been linked to the toxicity of mutant hSOD1 in astrocytes and neurons. In mutant SOD1-linked ALS, mitochondrial alterations may be partially due to the increased association of mutant SOD1 with the outer membrane and intermembrane space of the mitochondria, where it can affect several critical aspects of mitochondrial function. We have previously shown that decreasing glutathione levels, which is crucial for peroxide detoxification in the mitochondria, significantly accelerates motor neuron death in hSOD1G93A mice. Here we employed a catalase targeted to the mitochondria to investigate the effect of increased mitochondrial peroxide detoxification capacity in models of mutant hSOD1-mediated motor neuron death. The over-expression of mitochondria-targeted catalase improved mitochondrial antioxidant defenses and mitochondrial function in hSOD1G93A astrocyte cultures. It also reverted the toxicity of hSOD1G93A-expressing astrocytes towards co-cultured motor neurons, however ALS-animals did not develop the disease later or survive longer. Hence, while increased oxidative stress and mitochondrial dysfunction have been extensively documented in ALS, these results suggest that preventing peroxide-mediated mitochondrial damage alone is not sufficient to delay the disease.  相似文献   

15.
Mitochondria contribute to neuronal function not only via their ability to generate ATP, but also via their ability to buffer large Ca2+ loads. This review summarizes evidence that mitochondrial Ca2+ sequestration is especially important for sustaining the function of vertebrate motor nerve terminals during repetitive stimulation. Motor terminal mitochondria can sequester large amounts of Ca2+ because they have mechanisms for limiting both the mitochondrial depolarization and the increase in matrix free [Ca2+] associated with Ca2+ influx. In mice expressing mutations of human superoxide dismutase −1 (SOD1) that cause some cases of familial amyotrophic lateral sclerosis (fALS), motor terminals degenerate well before the death of motor neuron cell bodies. This review presents evidence for early and progressive mitochondrial dysfunction in motor terminals of mutant SOD1 mice (G93A, G85R). This dysfunction would impair mitochondrial ability to sequester stimulation-associated Ca2+ loads, and thus likely contributes to the early degeneration of motor terminals.  相似文献   

16.
Mitochondrial respiratory chain dysfunction, impaired intracellular Ca2+ homeostasis and activation of the mitochondrial apoptotic pathway are pathological hallmarks in animal and cellular models of familial amyotrophic lateral sclerosis associated with Cu/Zn-superoxide dismutase mutations. Although intracellular Ca2+ homeostasis is thought to be intimately associated with mitochondrial functions, the temporal and causal correlation between mitochondrial Ca2+ uptake dysfunction and motor neuron death in familial amyotrophic lateral sclerosis remains to be established. We investigated mitochondrial Ca2+ handling in isolated brain, spinal cord and liver of mutant Cu/Zn-superoxide dismutase transgenic mice at different disease stages. In G93A mutant transgenic mice, we found a significant decrease in mitochondrial Ca2+ loading capacity in brain and spinal cord, as compared with age-matched controls, very early on in the course of the disease, long before the onset of motor weakness and massive neuronal death. Ca2+ loading capacity was not significantly changed in liver G93A mitochondria. We also confirmed Ca2+ capacity impairment in spinal cord mitochondria from a different line of mice expressing G85R mutant Cu/Zn-superoxide dismutase. In excitable cells, such as motor neurons, mitochondria play an important role in handling rapid cytosolic Ca2+ transients. Thus, mitochondrial dysfunction and Ca2+-mediated excitotoxicity are likely to be interconnected mechanisms that contribute to neuronal degeneration in familial amyotrophic lateral sclerosis.  相似文献   

17.
Familial amyotrophic lateral sclerosis (ALS)-linked mutations in the copper-zinc superoxide dismutase (SOD1) gene cause motor neuron death in about 3% of ALS cases. While the wild-type (wt) protein is anti-apoptotic, mutant SOD1 promotes apoptosis. We now demonstrate that both wt and mutant SOD1 bind the anti-apoptotic protein Bcl-2, providing evidence of a direct link between SOD1 and an apoptotic pathway. This interaction is evident in vitro and in vivo in mouse and human spinal cord. We also demonstrate that in mice and humans, Bcl-2 binds to high molecular weight SDS-resistant mutant SOD1 containing aggregates that are present in mitochondria from spinal cord but not liver. These findings provide new insights into the anti-apoptotic function of SOD1 and suggest that entrapment of Bcl-2 by large SOD1 aggregates may deplete motor neurons of this anti-apoptotic protein.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu/Zn superoxide dismutase-1 (SOD1) cause familial ALS but the molecular mechanisms whereby these mutations induce motor neuron death remain controversial. Here, we show that stable overexpression of mutant human SOD1 (G37R) - but not wild-type SOD1 (wt-SOD1) - in mouse neuroblastoma cells (N2a) results in morphological abnormalities of mitochondria accompanied by several dysfunctions. Activity of the oxidative phosphorylation complex I was significantly reduced in G37R cells and correlated with lower mitochondrial membrane potential and reduced levels of cytosolic ATP. Using targeted chimeric aequorin we further analyzed the consequences of mitochondrial dysfunction on cellular Ca(2+) handling. Mitochondrial Ca(2+) uptake, elicited by IP(3)-induced Ca(2+) release from endoplasmic reticulum (ER) was significantly reduced in G37R cells, while uptake induced by a brief Ca(2+) pulse was not affected in permeabilized cells. The decreased mitochondrial Ca(2+) uptake resulted in increased cytosolic Ca(2+) transients, whereas ER Ca(2+) load and resting cytosolic Ca(2+) levels were not affected. Together, these findings suggest that the mechanism linking mutant G37R SOD1 and ALS involves mitochondrial respiratory chain deficiency resulting in ATP loss and impairment of mitochondrial and cytosolic Ca(2+) homeostasis.  相似文献   

19.
Mutations in Cu/Zn superoxide dismutase (SOD1) are linked to motor neuron death in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism, although misfolded SOD1 aggregates are commonly associated with disease. Proteomic analysis of the transgenic SOD1(G93A) ALS rat model revealed significant up-regulation of endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI) family members in lumbar spinal cords. Expression of SOD1 mutants (mSOD1) led to an up-regulation of PDI in motor neuron-like NSC-34 cells but not other cell lines. Inhibition of PDI using bacitracin increased aggregate production, even in wild type SOD1 transfectants that do not readily form inclusions, suggesting PDI may protect SOD1 from aggregation. Moreover, PDI co-localized with intracellular aggregates of mSOD1 and bound to both wild type and mSOD1. SOD1 was also found in the microsomal fraction of cells despite being a predominantly cytosolic enzyme, confirming ER-Golgi-dependent secretion. In SOD1(G93A) mice, a significant up-regulation of unfolded protein response entities was also observed during disease, including caspase-12, -9, and -3 cleavage. Our findings therefore implicate unfolded protein response and ER stress-induced apoptosis in the patho-physiology of familial ALS. The possibility that PDI may be a therapeutic target to prevent SOD1 aggregation is also raised by this study.  相似文献   

20.
Mutations in the Cu/Zn-superoxide dismutase (SOD1) gene cause familial amyotrophic lateral sclerosis (ALS) through the gain of a toxic function; however, the nature of this toxic function remains largely unknown. Ubiquitylated aggregates of mutant SOD1 proteins in affected brain lesions are pathological hallmarks of the disease and are suggested to be involved in several proposed mechanisms of motor neuron death. Recent studies suggest that mutant SOD1 readily forms an incorrect disulfide bond upon mild oxidative stress in vitro, and the insoluble SOD1 aggregates in spinal cord of ALS model mice contain multimers cross-linked via intermolecular disulfide bonds. Here we show that a non-physiological intermolecular disulfide bond between cysteines at positions 6 and 111 of mutant SOD1 is important for high molecular weight aggregate formation, ubiquitylation, and neurotoxicity, all of which were dramatically reduced when the pertinent cysteines were replaced in mutant SOD1 expressed in Neuro-2a cells. Dorfin is a ubiquityl ligase that specifically binds familial ALS-linked mutant SOD1 and ubiquitylates it, thereby promoting its degradation. We found that Dorfin ubiquitylated mutant SOD1 by recognizing the Cys(6)- and Cys(111)-disulfide cross-linked form and targeted it for proteasomal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号