首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
3.
4.
Under iron limitation, the plant pathogen Erwinia chrysanthemi produces the catechol-type siderophore chrysobactin, which acts as a virulence factor. It can also use enterobactin as a xenosiderophore. We began this work by sequencing the 5'-upstream region of the fct-cbsCEBA operon, which encodes the ferric chrysobactin receptor and proteins involved in synthesis of the catechol moiety. We identified a new iron-regulated gene (cbsH) transcribed divergently relative to the fct gene, the translated sequence of which is 45.6% identical to that of Escherichia coli ferric enterobactin esterase. Insertions within this gene interrupt the chrysobactin biosynthetic pathway by exerting a polar effect on a downstream gene with some sequence identity to the E. coli enterobactin synthase gene. These mutations had no effect on the ability of the bacterium to obtain iron from enterobactin, showing that a functional cbsH gene is not required for iron removal from ferric enterobactin in E. chrysanthemi. The cbsH-negative mutants were less able to utilize ferric chrysobactin, and this effect was not caused by a defect in transport per se. In a nonpolar cbsH-negative mutant, chrysobactin accumulated intracellularly. These defects were rescued by the cbsH gene supplied on a plasmid. The amino acid sequence of the CbsH protein revealed characteristics of the S9 prolyl oligopeptidase family. Ferric chrysobactin hydrolysis was detected in cell extracts from a cbsH-positive strain that was inhibited by diisopropyl fluorophosphate. These data are consistent with the fact that chrysobactin is a d-lysyl-l-serine derivative. M?ssbauer spectroscopy of whole cells at various states of (57)Fe-labeled chrysobactin uptake showed that this enzyme is not required for iron removal from chrysobactin in vivo. The CbsH protein may therefore be regarded as a peptidase that prevents the bacterial cells from being intracellularly iron-depleted by chrysobactin.  相似文献   

5.
6.
The intracellular fate of iron acquired by bacteria during siderophore-mediated assimilation is poorly understood. We investigated this question in the pathogenic enterobacterium Erwinia chrysanthemi. This bacterium produces two siderophores, chrysobactin and achromobactin, during plant infection. We analyzed the distribution of iron into cytosolic proteins in bacterial cells supplied with 59Fe-chrysobactin using native gel electrophoresis. A parental strain and mutants deficient in bacterioferritin (bfr), miniferritin (dps), ferritin (ftnA), bacterioferredoxin (bfd), or iron-sulfur cluster assembly machinery (sufABCDSE) were studied. In the parental strain, we observed two rapidly 59Fe-labeled protein signals identified as bacterioferritin and an iron pool associated to the protein chain-elongation process. In the presence of increased 59Fe-chrysobactin concentrations, we detected mini-ferritin-bound iron. Iron incorporation into bacterioferritin was severely reduced in nonpolar sufA, sufB, sufD, sufS, and sufE mutants but not in a sufC background. Iron recycling from bacterioferritin did not occur in bfd and sufC mutants. Iron depletion caused a loss of aconitase activity, whereas ferric chrysobactin supplementation stimulated the production of active aconitase in parental cells and in bfr and bfd mutants. Aconitase activity in sufA, sufB, sufD, sufS, and sufE mutant strains was 10 times lower than that in parental cells. In the sufC mutant, it was twice as low as that in the parental strain. Defects observed in the mutants were not caused by altered ferric chrysobactin transport. Our data demonstrate a functional link between bacterioferritin, bacterioferredoxin, and the Suf protein machinery resulting in optimal bacterial growth and a balanced distribution of iron between essential metalloproteins.  相似文献   

7.
8.
9.
Erwinia chrysanthemi 3937 possesses a saturable, high-affinity transport system for the ferric complex of its native siderophore chrysobactin, [N-alpha-(2,3-dihydroxybenzoyl)-D-lysyl-L-serine]. Uptake of 55Fe-labeled chrysobactin was completely inhibited by respiratory poison or low temperature and was significantly reduced in rich medium. The kinetics of chrysobactin-mediated iron transport were determined to have apparent Km and Vmax values of about 30 nM and of 90 pmol/mg.min, respectively. Isomers of chrysobactin and analogs with progressively shorter side chains mediated ferric iron transport as efficiently as the native siderophore, which indicates that the chrysobactin receptor primarily recognizes the catechol-iron center. Free ligand in excess only moderately reduced the accumulation of 55Fe. Chrysobactin may therefore be regarded as a true siderophore for E. chrysanthemi.  相似文献   

10.
Touraine B  Briat JF  Gaymard F 《FEBS letters》2012,586(6):880-883
Iron treatment of Arabidopsis cultured cells promotes a rapid NO burst within chloroplasts, necessary for up-regulation of the AtFer1 ferritin gene expression. The same occurs in Arabidopsis leaf chloroplasts, and is dependent upon the GSH content of plants. A leaf GSH concentration threshold between 10 and 50 nmol GSHg(-1) FW is required for full induction of AtFer1 gene expression in response to iron.  相似文献   

11.
12.
13.
14.
15.
Host cells respond to infection by generating nitric oxide (NO) as a cytotoxic weapon to facilitate killing of invading microbes. Bacterial flavohaemoglobins are well-known scavengers of NO and play a crucial role in protecting animal pathogens from nitrosative stress during infection. Erwinia chrysanthemi, which causes macerating diseases in a wide variety of plants, possesses a flavohaemoglobin (HmpX) whose function in plant pathogens has remained unclear. Here we show that HmpX consumes NO and prevents inhibition by NO of cell respiration, indicating a role in protection from nitrosative stress. Furthermore, infection of Saintpaulia ionantha plants with an HmpX-deficient mutant of E. chrysanthemi revealed that the lack of NO scavenging activity causes the accumulation of unusually high levels of NO in host tissue and triggers hypersensitive cell death. Introduction of the wild-type hmpX gene in an incompatible strain of Pseudomonas syringae had a dramatic effect on the hypersensitive cell death in soya bean cell suspensions, and markedly reduced the development of macroscopic symptoms in Arabidopsis thaliana plants. These observations indicate that HmpX not only protects against nitrosative stress but also attenuates host hypersensitive reaction during infection by intercepting NO produced by the plant for the execution of the hypersensitive cell death programme.  相似文献   

16.
17.
18.
In this communication, we examine the fate of iron during soft rot pathogenesis caused by Erwinia chrysanthemi on its host, Saintpaulia ionantha. The spread of soft rot caused by this enterobacterium was previously shown to depend on a functional genetic locus encoding a high-affinity iron assimilation system involving the catechol-type siderophore chrysobactin. Leaf intercellular fluid from healthy plants was analyzed with regard to the iron content and its availability for bacterial growth. It was compared to the fluid from diseased plants for the presence of strong iron ligands, using a new approach based on the iron-binding property of an ion-exchange resin. Further characterization allowed the identification of chrysobactin in diseased tissues, thus providing the first evidence for the external release of a microbial siderophore during pathogenesis. Competition for nutritional iron was also studied through a plant-bacterial cell system: iron incorporated into plant ferritin appeared to be considerably reduced in bacteria-treated suspension soybean cells. The same effect was visualized during treatment of soybean cells with axenic leaf intercellular fluid from E. chrysanthemi-inoculated saintpaulia leaves or with chrysobactin.  相似文献   

19.
In plants, iron homeostasis is tightly regulated to supply sufficient amounts of this metal for an optimal growth while preventing excess accumulation to avoid oxidative stress. To identify new regulators of iron homeostasis, a luciferase-based genetic screen using the Arabidopsis AtFer1 ferritin promoter as a target was developed. This screen identified TIME FOR COFFEE (TIC) as a regulator of AtFer1 gene expression. TIC was previously described as a nuclear regulator of the circadian clock. Mutants in the TIC gene exhibited a chlorotic phenotype rescued by exogenous iron addition and are hypersensitive to iron during the early stages of development. We showed that iron overload-responsive genes are regulated by TIC and by the central oscillator of the circadian clock. TIC represses their expression under low iron conditions, and its activity requires light and light/dark cycles. Regarding AtFer1, this repression is independent of the previously characterized cis-acting element iron-dependent regulatory sequence, known to be involved in AtFer1 repression. These results showed that the regulation of iron homeostasis in plants is a major output of the TIC- and central oscillator-dependent signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号