首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy landscape of a peptide [Ace-Lys-Gln-Cys-Arg-Glu-Arg-Ala-Nme] in explicit water was studied with a multicanonical molecular dynamics simulation, and the AMBER parm96 force field was used for the energy calculation. The peptide was taken from the recognition helix of the DNA-binding protein, c-MYB: A rugged energy landscape was obtained, in which the random-coil conformations were dominant at room temperature. The CD spectra of the synthesized peptide revealed that it is in the random state at room temperature. However, the 300 K canonical ensemble, Q(300K), contained alpha-helix, 3(10)-helix, beta-turn, and beta-hairpin structures with small but notable probabilities of existence. The complete alpha-helix, imperfect alpha-helix, and random-coil conformations were separated from one another in the conformational space. This means that the peptide must overcome energy barriers to form the alpha-helix. The overcoming process may correspond to the hydrogen-bond rearrangements from peptide-water to peptide-peptide interactions. The beta-turn, imperfect 3(10)-helix, and beta-hairpin structures, among which there are no energy barriers at 300 K, were embedded in the ensemble of the random-coil conformations. Two types of beta-hairpin with different beta-turn regions were observed in Q(300K). The two beta-hairpin structures may have different mechanisms for the beta-hairpin formation. The current study proposes a scheme that the random state of this peptide consists of both ordered and disordered conformations. In contrast, the energy landscape obtained from the parm94 force field was funnel like, in which the peptide formed the helical conformation at room temperature and random coil at high temperature.  相似文献   

2.
The conformational transition states of a beta-hairpin peptide in explicit water were identified from the free energy landscapes obtained from the multicanonical ensemble, using an enhanced conformational sampling calculation. The beta-hairpin conformations were significant at 300 K in the landscape, and the typical nuclear Overhauser effect signals were reproduced, consistent with the previously reported experiment. In contrast, the disordered conformations were predominant at higher temperatures. Among the stable conformations at 300 K, there were several free energy barriers, which were not visible in the landscapes formed with the conventional parameters. We identified the transition states around the saddle points along the putative folding and unfolding paths between the beta-hairpin and the disordered conformations in the landscape. The characteristic features of these transition states are the predominant hydrophobic contacts and the several hydrogen bonds among the side-chains, as well as some of the backbone hydrogen bonds. The unfolding simulations at high temperatures, 400 K and 500 K, and their principal component analyses also provided estimates for the transition state conformations, which agreed well with those at 400 K and 500 K deduced from the current free energy landscapes at 400 K and 500 K, respectively. However, the transition states at high temperatures were much more widely distributed on the landscape than those at 300 K, and their conformations were different.  相似文献   

3.
Autonomously folding beta-hairpins (two-strand antiparallel beta-sheets) have become increasingly valuable tools for probing the forces that control peptide and protein conformational preferences. We examine the effects of variations in sequence and solvent on the stability of a previously designed 12-residue peptide (1). This peptide adopts a beta-hairpin conformation containing a two-residue loop (D-Pro-Gly) and a four-residue interstrand sidechain cluster that is observed in the natural protein GB1. We show that the conformational propensity of the loop segment plays an important role in beta-hairpin stability by comparing 1 with (D)P--> N mutant 2. In addition, we show that the sidechain cluster contributes both to conformational stability and to folding cooperativity by comparing 1 with mutant 3, in which two of the four cluster residues have been changed to serine. Thermodynamic analysis suggests that the high loop-forming propensity of the (D)PG segment decreases the entropic cost of beta-hairpin formation relative to the more flexible NG segment, but that the conformational rigidity of (D)PG may prevent optimal contacts between the sidechains of the GB1-derived cluster. The enthalpic favorability of folding in these designed beta-hairpins suggests that they are excellent scaffolds for studying the fundamental mechanisms by which amino acid sidechains interact with one another in folded proteins.  相似文献   

4.
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a "flat" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores.  相似文献   

5.
H Wang  S S Sung 《Biopolymers》1999,50(7):763-776
Folding of beta-hairpin structures of synthetic peptides has been simulated using the molecular dynamics method with a solvent-referenced potential. Two similar sequences, Ac-MQIFVKS(D)PGKTITLKV-NH(2) and Ac-MQIFVKS(L)PGKTITLKV-NH(2), derived from the N-terminal beta-hairpin of ubiquitin, were used to study the effects of turn residues in beta-hairpin folding. The simulations were carried out for 80 ns at 297 K. With extended initial conformation, the (D)P-containing peptide folded into a stable 2:2 beta-hairpin conformation with a type II' beta-turn at (D)PG. The overall beta-hairpin ratio, calculated by the DSSP algorithm, was 32.6%. With randomly generated initial conformations, the peptide also formed the stable 2:2 beta-hairpin conformation. The interactions among the side chains in the 2:2 beta-hairpin were almost identical to those in the native protein. These interactions reduced the solvation energy upon folding and stabilized the beta-hairpin conformation. Without the solvent effect, the peptide did not fold into stable beta-hairpin structures. The solvent effect is crucial for the formation of the beta-hairpin conformation. The effect of the temperature has also been studied. The (L)P-containing peptide did not fold into a stable beta-hairpin conformation and had a much lower beta-hairpin ratio (16.6%). The( L)P-containing peptide has similar favorable side-chain interactions, but the turn formed by (L)PG does not connect well with the right-handed twist of the beta-strands. For comparison, the isolated N-terminal peptide of ubiquitin, Ac-MQIFVKTLTGKTITLEV-NH(2), was also simulated and its beta-hairpin ratio was low, indicating that the beta-hairpin in the native structure is stabilized by the interaction with the protein environment. These simulation results agreed qualitatively with the available experimental findings.  相似文献   

6.
The aggregation of alpha-helix-rich proteins into beta-sheet-rich amyloid fibrils is associated with fatal diseases, such as Alzheimer's disease and prion disease. During an aggregation process, protein secondary structure elements-alpha-helices-undergo conformational changes to beta-sheets. The fact that proteins with different sequences and structures undergo a similar transition on aggregation suggests that the sequence nonspecific hydrogen bond interaction among protein backbones is an important factor. We perform molecular dynamics simulations of a polyalanine model, which is an alpha-helix in its native state and observe a metastable beta-hairpin intermediate. Although a beta-hairpin has larger potential energy than an alpha-helix, the entropy of a beta-hairpin is larger because of fewer constraints imposed by the hydrogen bonds. In the vicinity of the transition temperature, we observe the interconversion of the alpha-helix and beta-sheet states via a random coil state. We also study the effect of the environment by varying the relative strength of side-chain interactions for a designed peptide-an alpha-helix in its native state. For a certain range of side-chain interaction strengths, we find that the intermediate beta-hairpin state is destabilized and even disappears, suggesting an important role of the environment in the aggregation propensity of a peptide.  相似文献   

7.
All-atom force fields are now routinely used for more detailed understanding of protein folding mechanisms. However, it has been pointed out that use of all-atom force fields does not guarantee more accurate representations of proteins; in fact, sometimes it even leads to biased structural distributions. Indeed, several issues remain to be solved in force field developments, such as accurate treatment of implicit solvation for efficient conformational sampling and proper treatment of backbone interactions for secondary structure propensities. In this study, we first investigate the quality of several recently improved backbone interaction schemes in AMBER for folding simulations of a beta-hairpin peptide, and further study their influences on the peptide's folding mechanism. Due to the significant number of simulations needed for a thorough analysis of tested force fields, the implicit Poisson-Boltzmann solvent was used in all simulations. The chosen implicit solvent was found to be reasonable for studies of secondary structures based on a set of simulations of both alpha-helical and beta-hairpin peptides with the TIP3P explicit solvent as benchmark. Replica exchange molecular dynamics was also utilized for further efficient conformational sampling. Among the tested AMBER force fields, ff03 and a revised ff99 force field were found to produce structural and thermodynamic data in comparably good agreement with the experiment. However, detailed folding pathways, such as the order of backbone hydrogen bond zipping and the existence of intermediate states, are different between the two force fields, leading to force field-dependent folding mechanisms.  相似文献   

8.
Nguyen PH  Stock G  Mittag E  Hu CK  Li MS 《Proteins》2005,61(4):795-808
The free energy landscape and the folding mechanism of the C-terminal beta-hairpin of protein G is studied by extensive replica exchange molecular dynamics simulations (40 replicas and 340 ns total simulation time), using the GROMOS96 force field and the SPC explicit water solvent. The study reveals that the system preferentially adopts a beta-hairpin structure at biologically important temperatures, and that the helix content is low at all temperatures studied. Representing the free energy landscape as a function of several types of reaction coordinates, four local minima corresponding to the folded, partially folded, molten globule, and unfolded states are identified. The findings suggest that the folding of the beta-hairpin occurs as the sequence: collapse of hydrophobic core --> formation of H-bond --> formation of the turn. Identifying the folded and molten globule states as the main conformations, the free energy landscape of the beta-hairpin is consistent with a two-state behavior with a broad transition state. The temperature dependence of the folding-unfolding transition is investigated in some detail. The enthalpy and entropy jumps at the folding transition temperature are found to be about three times lower than the experimental estimates, indicating that the folding-unfolding transition in silico is less cooperative than its in vitro counterpart.  相似文献   

9.
Cation-pi interactions between aromatic amino acids and the positively charged residues lysine and arginine have been proposed to play an important role in stabilizing protein structure. We have used a peptide that adopts a coiled coil structure as a model system to evaluate the energetic contribution of cation-pi interactions to protein folding. Peptides were designed in which phenylalanine, tyrosine, and tryptophan were placed at a solvent-exposed position of the helix, one turn removed from an arginine residue that could provide a favorable cation-pi interaction. Only the arginine-phenylalanine pairing provided significant stabilization of the peptide structure and it appears that hydrophobic packing, rather than the cation-pi effect, is more likely to be responsible for the stability of this peptide. We conclude that any stabilizing effect of cation-pi interactions in these peptides is much smaller than that predicted from computational studies.  相似文献   

10.
The peptide TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase adopts a helical conformation in the crystal structure and is a site for two hydrated helical segments, which are thought to be helical folding intermediates. Overlapping sequences of four to five residues from the peptide, sample both helical and strand conformations in known protein structures, which are dissimilar to glyceraldehyde-3-phosphate dehydrogenase suggesting that the peptide may have a structural ambivalence. Molecular dynamics simulations of the peptide sequence performed for a total simulation time of 1.2 micros, starting from the various initial conformations using GROMOS96 force field under NVT conditions, show that the peptide samples a large number of conformational forms with transitions from alpha-helix to beta-hairpin and vice versa. The peptide, therefore, displays a structural ambivalence. The mechanism from alpha-helix to beta-hairpin transition and vice versa reveals that the compact bends and turns conformational forms mediate such conformational transitions. These compact structures including helices and hairpins have similar hydrophobic radius of gyration (Rgh) values suggesting that similar hydrophobic interactions govern these conformational forms. The distribution of conformational energies is Gaussian with helix sampling lowest energy followed by the hairpins and coil. The lowest potential energy of the full helix may enable the peptide to take up helical conformation in the crystal structure of the glyceraldehyde-3-phosphate dehydrogenase, even though the peptide has a preference for hairpin too. The relevance of folding and unfolding events observed in our simulations to hydrophobic collapse model of protein folding are discussed.  相似文献   

11.
J Skolnick  A Kolinski  R Yaris 《Biopolymers》1989,28(6):1059-1095
In the context of dynamic Monte Carlo simulations on a model protein confined to a tetrahedral lattice, the interplay of protein size and tertiary structure, and the requirements for an all-or-none transition to a unique native state, are investigated. Small model proteins having a primary sequence consisting of a central bend neutral region flanked by two tails having an alternating hydrophobic/hydrophilic pattern of residues are seen to undergo a continuous transition to a beta-hairpin collapsed state. On increasing the length of the tails, the beta-hairpin structural motif is found to be in equilibrium with a four-member beta-barrel. Further increase of the tail length results in the shift of the structural equilibrium to the four-member beta-barrel. The random coil to beta-barrel transition is of an all-or-none character, but while the central turn is always the desired native bend, the location of the turns involving the two external strands is variable. That is, beta-barrels having the external stands that are two residues out of register are also observed in the transition region. Introduction into the primary sequence of two additional regions that are at the very least neutral toward turn formation produces an all-or-none transition to the unique, native, four-member beta-barrel. Various factors that can augment the stability of the native conformation are explored. Overall, these folding simulations strongly indicate that the general rules of globular protein folding are rather robust--namely, one requires a general pattern of hydrophobic/hydrophilic residues that allow the protein to have a well-defined interior and exterior and the presence of regions in the amino acid sequence that at the very least are locally indifferent to turn formation. Since no site-specific interactions between hydrophobic and hydrophilic residues are required to produce a unique four-member beta-barrel, these simulations strongly suggest that site specificity is involved in structural fine-tuning.  相似文献   

12.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

13.
Circular dichroism was used to study the folding of alpha alpha-tropomyosin and AcTM43, a 43-residue peptide designed to serve as a model for the N-terminal domain of tropomyosin. The sequence of the peptide is AcMDAIKKKMQMLKLDVENLLDRLEQLEADLKALEDRYKQLEGGC. The peptide appeared to form a coiled coil at low temperatures (< 25 degrees C) in buffers with physiological ionic strength and pH. The folding and unfolding of the peptide, however, were noncooperative. When CD spectra were examined as a function of temperature, the apparent degree of folding differed when the ellipticity was followed at 222, 208, and 280 nm. Deconvolution of the spectra suggested that at least three component curves contributed to the CD in the far UV. One component curve was similar to the CD spectrum of the coiled-coil alpha-helix of native alpha alpha-tropomyosin. The second curve resembled the spectrum of single-stranded short alpha-helical segments found in globular proteins. The third was similar to that of polypeptides in the random coil conformation. These results suggested that as the peptide folded, the alpha-helical content increased before most of the coiled coil was formed. When the CD spectrum of striated muscle alpha alpha-tropomyosin was examined as a function of temperature, the unfolding was also not totally cooperative. As the temperature was raised from 0 to 25 degrees C, there was a decrease in the coiled coil and an increase in the conventional alpha-helix type spectrum without formation of random coil. The major transition, occurring at 40 degrees C, was a cooperative transition characterized by the loss of all of the remaining coiled coil and a concomitant increase in random coil.  相似文献   

14.
A comparison of the contributions and position dependence of cross-strand electrostatic and aromatic side-chain interactions to beta-sheet stability has been performed by using nuclear magnetic resonance in a well-folded beta-hairpin peptide of the general sequence XRTVXVdPGOXITQX. Phe-Phe and Glu-Lys pairs were varied at the internal and terminal non-hydrogen-bonded position, and the resulting stability was measured by the effects on alpha-hydrogen and aromatic hydrogen chemical shifts. It was determined that the introduction of a Phe-Phe pair resulted in a more folded peptide, regardless of position, and a more tightly folded core. Substitution of the Glu-Lys pair at the internal position results in a less folded peptide and increased fraying at the terminal residues. Upfield shifting of the aromatic hydrogens provided evidence for an edge-face aromatic interaction, regardless of position of the Phe-Phe pair. In peptides with two Phe-Phe pairs, substitution with Glu-Lys at either position resulted in a weakening of the aromatic interaction and a subsequent decrease in peptide stability. Thermal denaturation of the peptides containing Phe-Phe indicates that the aromatic interaction is enthalpically favored, whereas the folding of hairpins with cross-strand Glu-Lys pairs was less enthalpically favorable but entropically more favorable.  相似文献   

15.
We previously demonstrated that a beta-hairpin peptide, termed BH(9-10), derived from a single-layer beta-sheet of Borrelia OspA protein, formed a native-like beta-turn in trifluoroethanol (TFE) solution, and it assembled into amyloid-like fibrils at higher TFE concentrations. This peptide is highly charged, and fibrillization of such a hydrophilic peptide is quite unusual. In this study, we designed a circularly permutated peptide of BH(9-10), termed BH(10-9). When folded into their respective beta-hairpin structures found in OspA, these peptides would have identical cross-strand interactions but different turns connecting the strands. NMR study revealed that BH(10-9) had little propensity to form a turn structure both in aqueous and TFE solutions. At higher TFE concentration, BH(10-9) precipitated with a concomitant alpha-to-beta conformational conversion, in a similar manner to the BH(9-10) fibrillization. However, the BH(10-9) precipitates were nonfibrillar aggregation. The precipitation kinetics of BH(10-9) was exponential, consistent with a first-order molecular assembly reaction, while the fibrillization of BH(9-10) showed sigmoidal kinetics, indicative of a two-step reaction consisting of nucleation and molecular assembly. The correlation between native-like turn formation and fibrillization of our peptide system strongly suggests that BH(9-10) adopts a native-like beta-hairpin conformation in the fibrils. Remarkably, seeding with the preformed BH(10-9) precipitates changed the two-step BH(9-10) fibrillization to a one-step molecular assembly reaction, and disrupted the BH(9-10) fibril structure, indicating interactions between the BH(10-9) aggregates and the BH(9-10) peptide. Our results suggest that, in these peptides, cross-strand interactions are the driving force for molecular assembly, and turn formation limits modes of peptide assembly.  相似文献   

16.
An elongated version of the de novo designed beta-hairpin peptide, BH8, has allowed us to gain insight into the role of electrostatic interactions in beta-hairpin stability. A Lys-Glu electrostatic pair has been introduced by adding a residue at the beginning and at the end of the N-terminal and C-terminal strands, respectively, of the beta-hairpin structure, in both orientations. The two resulting peptides and controls having Ala residues at these positions and different combinations of Ala with Lys, or Glu residues, have been analyzed by nuclear magnetic resonance (NMR), under different pH and ionic strength conditions. All of the NMR parameters, in particular the conformational shift analysis of Calpha protons and the coupling constants, (3)J(HNalpha), correlate well and the population estimates are in reasonable agreement among the different methods used. In the most structured peptides, we find an extension of the beta-hairpin structure comprising the two extra residues. Analysis of the pH and salt dependence shows that ionic pairs contribute to beta-hairpin stability. The interaction is electrostatic in nature and can be screened by salt. There is also an important salt-independent contribution of negatively charged groups to the stability of this family of beta-hairpin peptides.  相似文献   

17.
Yoda T  Sugita Y  Okamoto Y 《Proteins》2007,66(4):846-859
G-peptide is a 16-residue peptide of the C-terminal end of streptococcal protein G B1 domain, which is known to fold into a specific beta-hairpin within 6 micros. Here, we study molecular mechanism on the stability and folding of G-peptide by performing a multicanonical replica-exchange (MUCAREM) molecular dynamics simulation with explicit solvent. Unlike the preceding simulations of the same peptide, the simulation was started from an unfolded conformation without any experimental information on the native conformation. In the 278-ns trajectory, we observed three independent folding events. Thus MUCAREM can be estimated to accelerate the folding reaction more than 60 times than the conventional molecular dynamics simulations. The free-energy landscape of the peptide at room temperature shows that there are three essential subevents in the folding pathway to construct the native-like beta-hairpin conformation: (i) a hydrophobic collapse of the peptide occurs with the side-chain contacts between Tyr45 and Phe52, (ii) then, the native-like turn is formed accompanying with the hydrogen-bonded network around the turn region, and (iii) finally, the rest of the backbone hydrogen bonds are formed. A number of stable native hydrogen bonds are formed cooperatively during the second stage, suggesting the importance of the formation of the specific turn structure. This is also supported by the accumulation of the nonnative conformations only with the hydrophobic cluster around Tyr45 and Phe52. These simulation results are consistent with high phi-values of the turn region observed by experiment.  相似文献   

18.
Zhou Y  Linhananta A 《Proteins》2002,47(2):154-162
Predicting the folding mechanism of the second beta-hairpin fragment of the Ig-binding domain B of streptococcal protein G is unexpectedly challenging for simplified reduced models because the models developed so far indicated a different folding mechanism from what was suggested from high-temperature unfolding and equilibrium free-energy surface analysis based on established all-atom empirical force fields in explicit or implicit solvent. This happened despite the use of empirical residue-based interactions, multibody hydrophobic interactions, and inclusions of hydrogen bonding effects in the simplified models. This article employs a recently developed all-atom (except nonpolar hydrogens) model interacting with simple square-well potentials to fold the peptide fragment by molecular dynamics simulation methods. In this study, 193 out of 200 trajectories are folded at two reduced temperatures (3.5 and 3.7) close to the transition temperature T* approximately 4.0. Each simulation takes <7 h of CPU time on a Pentium 800-MHz PC. Folding of the new all-atom model is found to be initiated by collapse before the formation of main-chain hydrogen bonds. This verifies the mechanism proposed from previous all-atom unfolding and equilibrium simulations. The new model further predicts that the collapse is initiated by two nucleation contacts (a hydrophilic contact between D46 and T49 and a hydrophobic contact between Y45 and F52), in agreement with recent NMR measurements. The results suggest that atomic packing and native contact interactions play a dominant role in folding mechanism.  相似文献   

19.
Kobayashi N  Honda S  Yoshii H  Munekata E 《Biochemistry》2000,39(21):6564-6571
A short C-terminal fragment of immunoglobulin-binding domain of streptococcal protein G is known to form nativelike beta-hairpin at physiological conditions. To understand the cooperative folding of the short peptide, eight Ala-substituted mutants of the fragment were investigated with respect to their structural stabilities by analyzing temperature dependence of NMR signals. On comparison of the obtained thermodynamic parameters, we found that the nonpolar residues Tyr45 and Phe52 and the polar residues Asp46 and Thr49 are crucial for the beta-hairpin folding. The results suggest a strong interaction between the nonpolar side chains that participates in a putative hydrophobic cluster and that the polar side chains form a fairly rigid conformation around the loop (46-51). We also investigated the complex formation of the mutants with N-terminal fragment at the variety of temperature to get their thermal unfolding profiles and found that the mutations on the residues Asp46 and Thr49 largely destabilized the complexes, while substitution of Asp47 slightly stabilized the complex. From these results, we deduced that both the hydrophobic cluster formation and the rigidity of the loop (46-51) cooperatively stabilize the beta-hairpin structure of the fragment. These interactions which form a stable beta-hairpin may be the initial structural scaffold which is important in the early folding events of the whole domain.  相似文献   

20.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号