首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K562 erythroleukemia cells import non-transferrin-bound iron (NTBI) by an incompletely understood process that requires initial iron reduction. The mechanism of NTBI ferrireduction remains unknown but probably involves transplasma membrane electron transport. We here provide evidence for a novel mechanism of NTBI reduction and uptake by K562 cells that utilizes transplasma membrane ascorbate cycling. Incubation of cells with dehydroascorbic acid, but not ascorbate, resulted in (i) accumulation of intracellular ascorbate that was blocked by the glucose transporter inhibitor, cytochalasin B, and (ii) subsequent release of micromolar concentrations of ascorbate into the external medium via a route that was sensitive to the anion channel inhibitor, 4,4'-diisothiocyanatostilbene-2,2'-disulfonate. Ascorbate-deficient control cells demonstrated low levels of ferric citrate reduction. However, incubation of the cells with dehydroascorbic acid resulted in a dose-dependent stimulation of both iron reduction and uptake from radiolabeled [(55)Fe]ferric citrate. This stimulation was abrogated by ascorbate oxidase treatment, suggesting dependence on direct chemical reduction by ascorbate. These results support a novel model of NTBI reduction and uptake by K562 cells in which uptake is preceded by reduction of iron by extracellular ascorbate, the latter of which is subsequently regenerated by transplasma membrane ascorbate cycling.  相似文献   

2.
Belgrade (b) rats have an autosomal recessive, microcytic, hypochromic anemia. Transferrin (Tf)-dependent iron uptake is defective because of a mutation in DMT1 (Nramp2), blocking endosomal iron efflux. This experiment of nature permits the present study to address whether the mutation also affects non-Tf-bound iron (NTBI) uptake and to use NTBI uptake compared to Tf-Fe utilization to increase understanding of the phenotype of the b mutation. The distribution of 59Fe2+ into intact erythroid cells and cytosolic, stromal, heme, and nonheme fractions was different after NTBI uptake vs. Tf-Fe uptake, with the former exhibiting less iron into heme but more into stromal and nonheme fractions. Both reticulocytes and erythrocytes exhibit NTBI uptake. Only reticulocytes had heme incorporation after NTBI uptake. Properly normalized, incorporation into b/b heme was ∼20% of +/b, a decrease similar to that for Tf-Fe utilization. NTBI uptake into heme was inhibited by bafilomycin A1, concanamycin, NH4Cl, or chloroquine, consistent with the endosomal location of the transporter; cellular uptake was uninhibited. NTBI uptake was unaffected after removal of Tf receptors by Pronase or depletion of endogenous Tf. Concentration dependence revealed that NTBI uptake into cells, cytosol, stroma, and the nonheme fraction had an apparent low affinity for iron; heme incorporation behaved like a high-affinity process, as did an expression assay for DMT1. DMT1 serves in both apparent high-affinity NTBI membrane transport and the exit of iron from the endosome during Tf delivery of iron in rat reticulocytes; the low-affinity membrane transporter, however, exhibits little dependence on DMT1. J. Cell. Physiol. 178:349–358, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
Transferrin receptor (TfR) is a dimeric cell surface protein that binds both the serum iron transport protein transferrin (Fe-Tf) and HFE, the protein mutated in patients with the iron overload disorder hereditary hemochromatosis. HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, but HFE binding to TfR lowers the apparent affinity of the Fe-Tf/TfR interaction. This apparent affinity reduction could result from direct competition between HFE and Fe-Tf for their overlapping binding sites on each TfR polypeptide chain, from negative cooperativity, or from a combination of both. To explore the mechanism of the affinity reduction, we constructed a heterodimeric TfR that contains mutations such that one TfR chain binds only HFE and the other binds only Fe-Tf. Binding studies using a heterodimeric form of soluble TfR demonstrate that TfR does not exhibit cooperativity in heterotropic ligand binding, suggesting that some or all of the effects of HFE on iron homeostasis result from competition with Fe-Tf for TfR binding. Experiments using transfected cell lines demonstrate a physiological role for this competition in altering HFE trafficking patterns.  相似文献   

4.
The mechanism of iron transport into erythroid cells was investigated using rabbit reticulocytes and mature erythrocytes incubated with 59Fe-labelled Fe(II) in isotonic sucrose or in solutions in which the sucrose was replaced with varying amounts of isotonic NaCl or KCl. Iron uptake was inhibited at all concentrations of NaCl, in a concentration-dependent manner, but with KCl inhibition occurred only at concentrations up to 10 mM. Higher KCl concentrations stimulated iron uptake to the cytosol of the cells, but inhibited its incorporation into heme. This effect became more marked as the iron concentration was raised. It was found that KCl inhibits iron incorporation into heme and stimulates iron uptake by mature erythrocytes, as well as by reticulocytes. It is concluded that erythroid cells can take up nontransferrin-bound Fe(II) by two mechanisms. One is a high-affinity mechanism that is limited to reticulocytes, saturates at a low iron concentration, and is inhibited by metabolic inhibitors. The other is a low-affinity process that is found in both reticulocytes and erythrocytes, becomes more prominent at higher iron concentrations, and is stimulated by KCl, as well as RbCl, LiCl, CsCl, and choline Cl. The KCl stimulation is inhibited by amiloride, but not by metabolic inhibitors, and its operation is not dependent on changes in cell volume or membrane potential, but it does require the presence of a permeant extracellular anion. Iron uptake by this process appears to occur by facilitated transport and is possibly assoicated with exchange of Na+. A further aspect of this study was a comparison of iron uptake by reticulocytes from Fe(II)-sucrose and Fe(II)-ascorbate using a variety of incubation conditions. No major differences were observed. © 1995 Wiley-Liss, Inc.  相似文献   

5.
We have investigated the uptake and release of [3H]gamma-aminobutyric acid (GABA) by embryonic chick spinal cord cells maintained in culture. Cells dissociated from 4- or 7-d-old embryos were studied between 1 and 3 wk after plating. At 3 degrees C, [3H]GABA was accumulated by a high affinity (Km approximately equal to 4 microM) and a low affinity (Km approximately equal to 100 microM) mechanism. The high affinity transport was markedly inhibited in low Na+ media, by ouabain, at 0 degrees C, and by 2,4-diaminobutyric acid. Autoradiography, after incubation in 0.1 microM [3H]GABA, showed that approximately 50% (range = 30-70%) of the multipolar cells were labeled. These cells were neurons rather than glia; action potentials and/or synaptic potentials were recorded in cells subsequently found to be labeled. Non-neuronal, fibroblast-like cells and co-cultured myotubes were not labeled under the same conditions. The fact that not all of the neurons were labeled is consistent with the suggestion, based on studies of intact adult tissue, that high affinity transport of [3H]GABA may be unique to neurons that use GABA as a neurotransmitter. Our finding that none of fifteen physiologically identified cholinergic neurons, i.e., cells that innervated nearby myotubes, were heavily labeled after incubation in 0.1 microM [3H]GABA is significant in this regard. The newly taken up [3H]GABA was not metabolized in the short run. It was stored in a form that could be released when the neurons were depolarized in a high K+ (100 mM) medium. As expected for a neurotransmitter, the K+-evoked release was reversibly inhibited by reducing the extracellular Ca++/Mg++ ratio.  相似文献   

6.
Although the divalent metal transporter (DMT1) was suggested to transport a wide range of metals in Xenopus oocytes, recent studies in other models have provided contrasting results. Here, we provide direct evidence demonstrating that DMT1 expressed in yeast mutants defective for high affinity iron transport facilitates the transport of iron with an 'apparent K(m)' of approximately 1.2 microM, and transport of lead with an 'apparent K(m)' of approximately 1.8 microM. DMT1-dependent lead transport was H(+)-dependent and was inhibited by iron. Human embryonic kidney fibroblasts (HEK293 cells) overexpressing DMT1 also showed a higher uptake of lead than HEK293 cells without overexpressing DMT1. These results show that DMT1 transports lead and iron with similar affinity in a yeast model suggesting that DMT1 is a transporter for lead.  相似文献   

7.
The relationship between transferrin-free iron uptake and cellular metabolism was investigated using rabbit reticulocytes in which energy metabolism was altered by incubation with metabolic inhibitors (antimycin A, 2,4-dinitrophenol, NaCN, NaN3 and rotenone) or substrates. Measurements were made of cellular ATP concentration and the rate of uptake of Fe(II) from a sucrose solution buffered at pH 6.5. There was a highly significant correlation between the rate of iron uptake into cytosolic and stromal fractions of the cells and ATP levels. Iron transport into the cytosol showed saturation kinetics. The metabolic inhibitors all reduced the Vmax but had no effect on the Km values for this process. It is concluded that the uptake of transferrin-free iron by reticulocytes is dependent on the cellular concentration of ATP and that it crosses the cell membrane by an active, carrier-mediated transport process. Additional studies were performed using transferrin-bound iron. The metabolic inhibitors also reduced the uptake of this form of iron but the inhibition could be accounted for entirely by reduction in the rate of transferrin endocytosis.  相似文献   

8.
Mechanistic analysis of iron accumulation by endothelial cells of the BBB   总被引:1,自引:0,他引:1  
McCarthy RC  Kosman DJ 《Biometals》2012,25(4):665-675
The mechanism(s) by which iron in blood is transported across the blood-brain barrier (BBB) remains controversial. Here we have examined the first step of this trans-cellular pathway, namely the mechanism(s) of iron uptake into human brain microvascular endothelial cells (hBMVEC). We show that hBMVEC actively reduce non-transferrin bound Fe(III) (NTBI) and transferrin-bound Fe(III) (TBI); this activity is associated with one or more ferrireductases. Efficient, exo-cytoplasmic ferri-reduction from TBI is dependent upon transferrin receptor (TfR), also. Blocking holo-Tf binding with an anti-TfR antibody significantly decreases the reduction of iron from transferrin by hBMVEC, suggesting that holo-Tf needs to bind to TfR in order for efficient reduction to occur. Ferri-reduction from TBI significantly decreases when hBMVEC are pre-treated with Pt(II), an inhibitor of cell surface reductase activity. Uptake of (59)Fe from (59)Fe-Tf by endothelial cells is inhibited by 50?% when ferrozine is added to solution; in contrast, no inhibition occurs when cells are alkalinized with NH(4)Cl. This indicates that the iron reduced from holo-transferrin at the plasma membrane accounts for at least 50?% of the iron uptake observed. hBMVEC-dependent reduction and uptake of NTBI utilizes a Pt(II)-insensitive reductase. Reductase-independent uptake of Fe(II) by hBMVEC is inhibited up to 50?% by Zn(II) and/or Mn(II) by a saturable process suggesting that redundant Fe(II) transporters exist in the hBMVEC plasma membrane. These results are the first to demonstrate multiple mechanism(s) of TBI and NTBI reduction and uptake by endothelial cells (EC) of the BBB.  相似文献   

9.
The synaptosomal transport of L-[35S]cystine occurs by three mechanisms that are distinguishable on the basis of their ionic dependence, kinetics of transport and the specificity of inhibitors. They are (a) low affinity sodium-dependent transport (Km 463 +/- 86 microM, Vmax 185 +/- 20 nmol mg protein-1 min-1), (b) high affinity sodium-independent transport (Km 6.90 +/- 2.1 microM, Vmax 0.485 +/- 0.060 nmol mg protein(-1) min(-1)) and (c) low affinity sodium-independent transport (Km 327 +/- 29 microM, Vmax 4.18 +/- 0.25 nmol mg protein(-1) min(-1)). The sodium-dependent transport of L-cystine was mediated by the X(AG)- family of glutamate transporters, and accounted for almost 90% of the total quantity of L-[35S]cystine accumulated into synaptosomes. L-glutamate (Ki 11.2 +/- 1.3 microM) was a non-competitive inhibitor of this transporter, and at 100 microM L-glutamate, the Vmax for L-[35S]cystine transport was reduced to 10% of control. L-cystine did not inhibit the high-affinity sodium-dependent transport of D-[3H]aspartate into synaptosomes. L-histidine and glutathione were the most potent inhibitors of the low affinity sodium-independent transport of L-[35S]cystine. L-homocysteate, L-cysteine sulphinate and L-homocysteine sulphinate were also effective inhibitors. 1 mM L-glutamate reduced the sodium-independent transport of L-cystine to 63% of control. These results suggest that the vast majority of the L-cystine transported into synaptosomes occurs by the high-affinity glutamate transporters, but that L-cystine may bind to a site that is distinct from that to which L-glutamate binds. The uptake of L-cystine by this mechanism is sensitive to inhibition by increased extracellular concentrations of L-glutamate. The importance of these results for understanding the mechanism of glutamate-mediated neurotoxicity is discussed.  相似文献   

10.
In many types of cells the synthesis of delta-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from our laboratory with reticulocytes suggest that the rate of iron uptake from transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels of Fe-Tf (20 microM). Furthermore, in induced Friend cells 100 microM Fe-SIH stimulated 2-14C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. In contrast, Fe-SIH, even when added in high concentrations, did not stimulate heme synthesis in uninduced Friend cells but was able to do so as early as 24 to 48 h following induction. In addition, contrary to previous results with rabbit reticulocytes, Fe-SIH also stimulated globin synthesis in induced Friend cells above the level seen with saturating concentrations of transferrin. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells.  相似文献   

11.
Since the opportunistic pathogen Pneumocystis carinii grows only slowly in vitro, the mechanism of glucose uptake was investigated to better understand how the organism transports nutrients. Using the non-metabolizable analogue 2-deoxyglucose, two uptake systems were detected with Q(10) values of 2.12 and 2.09, respectively. One had a high affinity (K(m)=67.5 microM) and the other a low affinity (K(m)=5.99 mM) for 2-deoxyglucose uptake. Glucose or deoxyglucose phosphate products from transported radiolabeled substrates were not detected during the incubation times used in this study. Both systems were inhibited by mannose, galactose, fructose, galactosamine, glucosamine, and glucose but not by allose, 5-thioglucose, xylose, glucose 6-phosphate and glucuronic acid. Salicylhydroxamate, KCN, iodoacetate, and 2,4-dinitrophenol inhibited the high-affinity transporter, suggesting it required ATP. Ouabain, monensin, carbonyl cyanide m-chlorophenylhydrazone, and N,N'-dicyclohexylcarbodiimide also inhibited deoxyglucose uptake, as did the replacement of Na(+) in the incubation medium with choline, indicating requirements for Na(+) and H(+). The high-affinity system was also inhibited by the protein synthesis inhibitors cycloheximide and chloramphenicol. In contrast, the low-affinity system transported deoxyglucose by facilitated diffusion mechanisms. Unlike the human erythrocyte glucose transporter GLUT1, the P. carinii transporters recognized fructose and galactose and were relatively insensitive to cytochalasin B, suggesting that the P. carinii glucose transporters may be good drug targets.  相似文献   

12.
There is considerable controversy at present concerning the mechanisms responsible for the cellular uptake of anandamide. One particular issue concerns whether fatty acid-free bovine serum albumin should be used in the assays, it having been argued that such a presence effectively prevents the specific uptake of anandamide. In the present study, it has been demonstrated that in the presence of a low (0.1%, w/v) concentration of fatty acid-free bovine serum albumin, a temperature-dependent and saturable (K(m) approximately 1 microM) uptake of anandamide into P19 embryonic carcinoma cells can be demonstrated using an incubation time of 4 min. Under these conditions, the uptake of anandamide at 4 degrees C is low at a substrate concentration of 100 nM. The uptake at 37 degrees C was not significantly reduced following treatment of the cells with either methyl-beta-cyclodextrin (50 microM) or mevinolin (1 microM), but was reduced by the FAAH inhibitor URB597 (1 microM) and inhibited by the transport inhibitor cum FAAH substrate AM404 with an IC(50) value of 12 microM. When a 45 s incubation time was used, the uptake of anandamide was not saturable at 37 degrees C over the concentration range tested (0.1-1 microM). Analysis of the data at 37 degrees C obtained with 45 s, 4 min and 15 min incubation times revealed a very rapid (i.e. complete by 45 s) non-saturable component followed by a slower saturable (K(m) approximately 1 microM) component of the uptake. It is concluded that the presence of a low concentration of fatty acid-free bovine serum albumin at a suitable concentration reduces non-specific binding (and release) of anandamide to cell culture wells, greatly reduces the cellular accumulation seen at 4 degrees C, and allows the visualisation of both non-saturable and saturable components of the uptake to be seen at 37 degrees C.  相似文献   

13.
Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI). NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.  相似文献   

14.
Abstract— Evidence is presented that glycine is taken up by two different transport systems in rat CNS tissue slices; one system has relatively low affinity for glycine (Km = 300 μ m ) and predominates in cerebral cortex, cerebellum and mid-brain, the other has a higher affinity for glycine (Km = 40 μ m ) and is detectable only in spinal cord, medulla and pons. The low affinity transport system appears to be shared by other small neutral amino acids, whereas the high affinity system is very specific for glycine. Both transport systems were shown to be present in particles in homogenates of CNS tissue by incubation with glycine in vitro , and subcellular fractionation studies suggested that synaptosomes were partly responsible for such uptake. Various substances were tested as inhibitors of the high affinity uptake system for glycine in spinal cord slices; the most potent inhibitors were p -chloro-mercuriphenylsulphonate, N -ethylmaleimide, chlorpromazine, imipramine, desipramine, hydrazinoacetic acid and haloperidol. No competitive inhibitors of the high affinity glycine uptake were found. It is suggested that the high affinity transport system is associated with inhibitory synapses where glycine is a transmitter.  相似文献   

15.
Aluminum (Al) and iron (Fe) share several physicochemical characteristics and they both bind to transferrin (Tf), entering the cell via Tf receptors (TfR). Previously, we found similar values of affinity constant for the binding of TfR to Tf carrying either Al or Fe. The competitive interaction between both metals prevented normal Fe incorporation into K562 cells and triggered the upregulation of Fe transport. In the present work we demonstrated that Al modified Fe uptake without affecting the expression of Tf receptors. Both TfR and TfR2 mRNA levels, evaluated by RT-PCR, and TfR antigenic sites, analyzed by flow cytometry, were found unchanged after Al exposure. In turn, Al did induce upregulation of non-Tf bound Fe (NTBI) uptake. This modulation was not due to intracellular Fe decrease since NTBI transport proved not to be regulated by Fe depletion. Unlike its behavior in the presence of Tf, Al was unable to compete with NTBI uptake, suggesting that both metals do not share the same alternative transport pathway. We propose that Al interference with TfR-mediated Fe incorporation might trigger the upregulation of NTBI uptake, an adaptation aimed at incorporating the essential metal required for cellular metabolism without allowing the simultaneous access of a potentially toxic metal.  相似文献   

16.
The protozoan parasite Toxoplasma gondii depends upon salvaging the purines that it requires. We have re-analysed purine transport in T. gondii and identified novel nucleoside and nucleobase transporters. The latter transports hypoxanthine (TgNBT1; K(m)=0.91+/-0.19 microM) and is inhibited by guanine and xanthine: it is the first high affinity nucleobase transporter to be identified in an apicomplexan parasite. The previously reported nucleoside transporter, TgAT1, is low affinity with K(m) values of 105 and 134 microM for adenosine and inosine, respectively. We have now identified a second nucleoside transporter, TgAT2, which is high affinity and inhibited by adenosine, inosine, guanosine, uridine and thymidine (K(m) values 0.28-1.5 microM) as well as cytidine (K(i)=32 microM). TgAT2 also recognises several nucleoside analogues with therapeutic potential. We have investigated the basis for the broad specificity of TgAT2 and found that hydrogen bonds are formed with the 3' and 5' hydroxyl groups and that the base groups are bound through H-bonds with either N3 of the purine ring or N(3)H of the pyrimidine ring, and most probably pi-pi-stacking as well. The identification of these high affinity purine nucleobase and nucleoside transporters reconciles for the first time the low abundance of free nucleosides and nucleobases in the intracellular environment with the efficient purine salvage carried out by T. gondii.  相似文献   

17.
HFE is a class I major histocompatibility complex (MHC)-related protein that is mutated in patients with the iron overload disease hereditary hemochromatosis. HFE binds to transferrin receptor (TfR), the receptor used by cells to obtain iron in the form of diferric transferrin (Fe-Tf). Previous studies demonstrated that HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, and that membrane-bound or soluble HFE binding to cell surface TfR results in a reduction in the affinity of TfR for Fe-Tf. We studied the inhibition by soluble HFE of the interaction between soluble TfR and Fe-Tf using radioactivity-based and biosensor-based assays. The results demonstrate that HFE inhibits the TfR:Fe-Tf interaction by binding at or near the Fe-Tf binding site on TfR, and that the Fe-Tf:TfR:HFE ternary complex consists of one Fe-Tf and one HFE bound to a TfR homodimer.  相似文献   

18.
alpha-Glucosides are the most abundant fermentable sugars in the industrial applications of Saccharomyces cerevisiae, and the active transport across the plasma membrane is the rate-limiting step for their metabolism. In this report we performed a detailed kinetic analysis of the active alpha-glucoside transport system(s) present in a wild-type strain, and in strains with defined alpha-glucoside permeases. Our results indicate that the wild-type strain harbors active transporters with high and low affinity for maltose and trehalose, and low-affinity transport systems for maltotriose and alpha-methylglucoside. The maltose permease encoded by the MAL21 gene showed a high affinity (K(m) approximately 5 mM) for maltose, and a low affinity (K(m) approximately 90 mM) for trehalose. On the other hand, the alpha-glucoside permease encoded by the AGT1 gene had a high affinity (K(m) approximately 7 mM) for trehalose, a low affinity (K(m) approximately 18 mM) for maltose and maltotriose, and a very low affinity (K(m) approximately 35 mM) for alpha-methylglucoside.  相似文献   

19.
Choline enters brain by saturable transport at the blood-brain barrier (BBB). In separate studies, both sodium-dependent and passive choline transport systems of differing affinity have been reported at brain capillary endothelial cells. In the present study, we re-examined brain choline uptake using the in situ rat brain perfusion technique. Saturable brain choline uptake from perfusion fluid was best described by a model with a single transporter (V:(max) = 2.4-3.1 nmol/min/g; K(m) = 39-42 microM) with an apparent affinity (1/Km)) for choline five to ten-fold greater than previously reported in vivo, but less than neuronal 'high-affinity' brain choline transport (K(m) = 1-5 microM). BBB choline uptake from a sodium-free perfusion fluid using sucrose for osmotic balance was 50% greater than in the presence of sodium suggesting that sodium is not required for transport. Hemicholinium-3 inhibited brain choline uptake with a K(i) (57 +/- 11 microM) greater than that at the neuronal choline system. In summary, BBB choline transport occurs with greater affinity than previously reported, but does not match the properties of the neuronal choline transporter. The V:(max) of this system is appreciable and may provide a mechanism for delivering cationic drugs to brain.  相似文献   

20.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号