首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we describe the identification of the hedgehog Erinaceus europaeus homologue of a proliferation-inducing ligand (APRIL) of the TNF family (designated heAPRIL). Hedgehog APRIL contains two cysteine residues (Cys196 and Cys211), a furin protease cleavage site and a conserved putative N-glycosylation site (Asn124). Real-time quantitative PCR (qPCR) analysis revealed that heAPRIL could be detected in various tissues. MTT assays and flow cytometric analysis revealed that Nus-hesAPRIL and hesAPRIL could promote the survival/proliferation of splenic B cells. Laser scanning confocal microscopy analysis showed GFP-hesAPRIL could successfully bind to the APRIL receptors of lymphocytes.  相似文献   

2.
Luo CH  Ai HX  Zhou XM  Min C  Liang ZN  Zhang JX  Song R  Liu MY  Zhang SQ 《Gene》2011,485(2):63-68
A proliferation-inducing ligand (APRIL) is an important member of the tumor necrosis factor (TNF) superfamily. In the present study, a novel cDNA was isolated from the spleen of goat by RT-PCR and designated as goat APRIL (gAPRIL). The open reading frame (ORF) of this cDNA covered 753 bp, encoding a protein of 250 amino acids. Sequence comparison showed that gAPRIL contains a predicted transmembrane domain, a putative furin protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF gene in mammals. The predicted three dimensional (3D) structure of soluble part of the gAPRIL (gsAPRIL) monomer analyzed by comparative protein modeling revealed that it is very similar to its counterparts. Real-time PCR analysis revealed that gAPRIL was constitutively expressed in various tissues. Recombinant gsAPRIL fused with NusA tag was efficiently produced in Escherichia coli BL21 (DE3) and then analyzed by the SDS-PAGE as well as western blot. Laser scanning confocal microscopy analysis showed gsAPRIL could bind to its receptors. In vitro, the MTT and flow cytometric methods revealed that purified gsAPRIL protein was not only able to promote survival/proliferation of goat splenocytes, but also able to stimulate survival/proliferation of mouse B cells. These results indicated that gAPRIL plays an important role in survival/proliferation of goat splenocytes and provided a basis for investigating its potential to be used as an immunoadjuvant for enhancing vaccine efficacy and as an immunotherapeutic in goats.  相似文献   

3.
ArsD is a metallochaperone that delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. Conserved ArsD cysteine residues (Cys12, Cys13 and Cys18) construct the As(III) binding site of the protein, however a global structural understanding of this arsenic binding remains unclear. We have obtained NMR assignments for ArsD as a starting point for probing structural changes on the protein that occur in response to metalloid binding and upon formation of a complex with ArsA. The predicted solution structure of ArsD is in agreement with recently published crystallographic structural results.  相似文献   

4.
You F  Zhou L  Liu X  Fan J  Ke Z  Ren W 《Gene》2012,498(2):196-202
A proliferation-inducing ligand (APRIL) is a novel member of the tumor necrosis factor (TNF) superfamily, which is involved in immune regulation. In the present study, the full-length cDNA of APRIL (designated bAPRIL) from bat was cloned using RT-PCR and its biological activities have been characterized. The open reading frame (ORF) of this cDNA consists of 753 bases, encoding a protein of 250 amino acids. This protein was found to contain a predicted transmembrane domain, a putative furin protease cleavage site, and a typical TNF homology domain corresponding to other, known APRIL homologs. Real-time quantitative PCR (qPCR) analysis indicated that bAPRIL mRNA was predominantly expressed in bat lymphoid tissue spleen. The SUMO-bsAPRIL was efficiently expressed in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western blot analysis. Laser scanning confocal microscopy analysis showed that bsAPRIL could bind to its receptors on B cells. In vitro, MTT assays indicated that bsAPRIL could promote the survival/proliferation of mouse splenic B cells grown with anti-mouse IgM. These findings indicate that bsAPRIL plays an important role in the survival and proliferation of B cells and has functional cross-reactivity among mammalians. The present findings may provide valuable information for research into the immune system of the bat.  相似文献   

5.
A full-length cDNA coding lipoprotein lipase (LPL) was cloned from liver of adult common carp (Cyprinus carpio Var. Jian) by RT-PCR and rapid amplification of cDNA ends (RACE) approaches. The cDNA obtained was 2,411 bp long with a 1,524 bp open reading frame (ORF) encoding 507 amino acids. This amino acid sequence contains two structural regions: N-terminus (24–354 residues) and C-terminus (355–507 residues). Before N-terminus, 1–23 residues is signal peptide, 6–23 residues is transmembrance helix. At N-terminus, some conversed functional sites were found, including two N-linked glycosylation sites Asn41 and Asn88; one catalytic triad Ser174, Asp198 and His283; one conserved heparin-binding site Arg321 to Arg324 (RKNR); eight cysteines residues Cys69 and Cys82, Cys258 and Cys281, Cys306 and Cys325, Cys317 and Cys320 which are involved in four disulfide bridges; one polypeptide “lid” that participates in substrate specificity. At C-terminus, Asn401 is another N-linked glycosylation site, and Trp434 and Trp435 (WW) is lipid-binding site. The amino acid sequence has a high similarity, and shows similar structural features to LPL of other species. Tissue distribution of LPL mRNA in liver, head kidney, mesenteric adipose tissue, heart and white muscle of common carp was analyzed by semi-quantitative RT-PCR method using β-actin gene as internal control. The result showed that the expressions of LPL mRNA were detected in all examined tissues of common carp. The expression levels of LPL in the mesenteric adipose tissue was highest among these tissues, following in liver and head kidney, and the lowest expression was found in heart and white muscle.  相似文献   

6.
《FEBS letters》2014,588(23):4382-4389
rCNT2 is a purine-preferring concentrative nucleoside transporter implicated in the regulation of extracellular adenosine levels and purinergic signaling. This study addressed the analysis of the CNT2 C-terminus tail as a domain likely to be implicated in transporter sorting. The topological mapping of this segment revealed that Cys615 and Cys649 are important residues for the proper trafficking of CNT2 to the plasma membrane. The inhibition of protein disulfide isomerase (PDI) and ER glycosidase I and II impaired rCNT2 trafficking to the cell surface, similarly to Cys615 and Cys649 mutants. The present work suggests these two cysteine residues are relevant for the proper sorting of the transporter and its functional performance.  相似文献   

7.
Summary Four enhanced carbonyl carbon resonances were observed whenStreptomyces subtilisin inhibitor (SSI) was labeled by incorporating specifically labeled [1-13C]Cys. The13C signals were assigned by the15N,13C double-labeling method along with site-specific mutagenesis. Changes in the spectrum of the labeled protein ([C]SSI) were induced by reducing the disulfide bonds with various amounts of dithiothreitol (DTT). The results indicate that, in the absence of denaturant, the Cys71-Cys101 disulfide bond of each SSI subunit can be reduced selectively. This disulfide bond, which is in the vicinity of the reactive site scissile bond Met73-Val74, is more accessible to solvent than the other disulfide bond. Cys35-Cys50, which is embedded in the interior of SSI. This half-reduced SSI had 65% of the inhibitory activity of native SSI and maintained a conformation similar to that of the fully oxidized SSI. Reoxidation of the half reduced-folded SSI by air regenerates fully active SSI which is indistinguishable with intact SSI by NMR. In the presence of 3 M guanidine hydrochloride (GuHCl), however, both disulfide bonds of each SSI subunit were readily reduced by DTT. The fully reduced-unfolded SSI spontaneously refolded into a native-like structure (fully reduced-folded state), as evidenced by the Cys carbonyl carbon chemical shifts, upon removing GuHCl and DTT from the reaction mixture. The time course of disulfide bond regeneration from this state by air oxidation was monitored by following the NMR spectral changes and the results indicated that the disulfide bond between Cys71 and Cys101 regenerates at a much faster rate than that between Cys35 and Cys50.Nomenclature of the various states of SSI that are observed in the present study Fully oxidized-folded native or intact (without GuHCl or DTT) - half reduced-folded (Cys71-Cys101 reduced; DTT without GuHCl) - inversely half reduced-folded (Cys35-Cys50 reduced; a reoxidation intermediate from fully reduced-folded state) - fully reduced-unfolded (reduced by DTT in the presence of GuHCl) - fully reduced-folded (an intermediate state obtained by removing DTT and GuHCl from the fully reduced-unfolded SSI reaction mixture)  相似文献   

8.
Two Expressed Sequence Tagged (EST) clones were identified from the Arabidopsis database as encoding putative cytidine deaminases. Sequence analysis determined that the two clones overlapped and encoded a single cDNA. This cytidine deaminase corresponds to theArabidopsis thaliana gene,cda1. The deduced amino acid sequence was more closely related to prokaryotic cytidine deaminases than to eukaryotic enzymes. The cDNA shares 44% amino acid identity with theEscherichia coli cytidine deaminase but only 26 and 27% identity with human and yeast enzymes. A unique zinc-binding domain of the Ecoli enzyme forms the active site. A similar putative zinc-binding domain was identified in the Arabidopsis enzyme based upon primary sequence similarities. These similarities permitted us to model the active site of the Arabidopsis enzyme upon that of the Ecoli enzyme. In this model, the active site zinc is coordinated by His73, Cys103, Cys107, and an active site hydroxyl. Additional residues that participate in catalysis, Asn64, Glu66, Ala78, Glu79, and Pro102, are conserved between the Arabidopsis and Ecoli enzymes suggesting that the Arabidopsis enzyme has a catalytic mechanism similar to the Ecoli enzyme. The two overlapping ESTs were used to prepare a single, full-length clone corresponding to theA thaliana cda1 cDNA. This cDNA was subcloned into pProExHtb and expressed as a fusion protein with an N-terminal His6 tag. Following purification on a Ni-NTA-Agarose column, the protein was analyzed for its kinetic properties. The enzyme utilizes both cytidine (Km = 226 μand 2’-deoxycytidine (Km= 49 μM) as substrates. The enzyme was unable to deaminate cytosine, CMP or dCMP. journal Paper Number J-18324 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa Project No. 3340.  相似文献   

9.
A three-disulfide form of hen egg white lysozyme with Cys6 and Cys127 blocked by carboxymethyl groups was prepared, purified, and characterized for eventual use in protein folding experiments. Trypsin digestion followed by proline-specific endopeptidase digestion facilitated the unambiguous assignment of the disulfide bond pairings and the modified residues in this derivative. 3SS-lysozyme demonstrated nearly full enzymatic activity at itspH optimum,pH 5.5. The 3SS-lysozyme derivative and unmodified lysozyme were shown to be identical by CD spectroscopy atpH 3.6. Immunochemical binding assays demonstrated that the conformation of lysozyme was perturbed predominantly only locally by breaking and blocking the disulfide bond between Cys6 and Cys127. Both 3SS-lysozyme and unmodified lysozyme exhibited reversible thermally induced transitions atpH 2.0 but theT m of 3SS-lysozyme, 18.9°C, was found to be 34° lower than that of native lysozyme under the same conditions. The conformational chemical potential of the denatured form of unmodified lysozyme was determined from the transition curves to be approximately 6.7 kcal/mol higher than that of the denatured form of 3SS-lysozyme, atpH 2.0 and 35°C, if the conformational chemical potential for the folded forms ofboth 3SS-lysozyme and unmodified lysozyme is arbitrarily assumed to be 0.0 kcal/mol. A calculation of the increase in the theoretical loop entropy of denatured 3SS-lysozyme resulting from the cleavage of the Cys6-Cys127 disulfide bond, however, yielded a value of only 5.4 kcal/mol for the difference in conformational chemical potential. This suggests that, in addition to the entropic component, there is also an enthalpic contribution to the difference in the conformational chemical potential corresponding to approximately 1.3 kcal/mol. Thus, it is concluded that the reduction and blocking of the disulfide bond between Cys6 and Cys127 destabilizes 3SS-lysozyme relative to unmodified lysozyme predominantly by stabilizing the denatured conformation by increasing its chain entropy.Cornell Biotechnology Army Research Office Predoctoral Fellow, 1986–1989.  相似文献   

10.
To ascertain the functional role of cysteine residue in 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase from Corynebacterium glutamicum, site-directed mutagenesis was performed to change each of the three residues to serine. Plasmids were constructed for high-level overproduction and one-step purification of histidine-tagged DAHP synthase. Analysis of the purified wild-type and mutant enzymes by SDS-polyacrylamide gel electrophoresis showed an apparent protein band with a molecular mass of approximately 45 kDa. Cys145Ser mutant retained about 16% of the enzyme activity, while DAHP synthase activity was abolished in Cys67Ser mutant. Kinetic analysis of Cys145Ser mutant with PEP as a substrate revealed a marked increase in K m with significant change in k cat , resulting in a 13.6-fold decrease in k cat /K m PEP. Cys334 was found to be nonessential for catalytic activity, although it is highly conserved in DAHP synthases. From these studies, Cys67 appears important for synthase activity, while Cys145 plays a crucial role in the catalytic efficiency through affecting the mode of substrate binding. Received: 10 October 2000 / Accepted: 17 November 2000  相似文献   

11.
Guanylyl cyclase C (GC-C) is a single-transmembrane receptor that is specifically activated by endogenous ligands, including guanylin, and the exogenous ligand, heat-stable enterotoxin. Using combined HPLC separation and MS analysis techniques the positions of the disulfide linkages in the extracellular ligand-binding domain (ECD) of GC-C were determined to be between Cys7–Cys94, Cys72–Cys77, Cys101–Cys128 and Cys179–Cys226. Furthermore, a three-dimensional structural model of the ECD was constructed by homology modeling, using the structure of the ECD of GC-A as a template (van den Akker et al., 2000, Nature, 406: 101–104) and the information of the disulfide linkages. Although the GC-C model was similar to the known structure of GC-A, importantly its ligand-binding site appears to be located on the quite different region from that in GC-A.  相似文献   

12.
The growth hormone (GH) is a pluripotent hormone produced by the pituitary in vertebrates. It plays important roles in the growth, development, and metabolism of vertebrates.We cloned GH cDNA sequence of Pampus argenteus (GenBank: KT257176). Multi‐sequence analysis revealed P. argenteus GH cDNA contained four conservative cysteine residues positions (Cys69, Cys177, Cys194, and Cys202) and shared more than 51.5% identity with homologues from other reported bony fish GHs, except that of Lepisosteus osseus. We used semi‐quantitative RT‐PCR and quantitative real‐time PCR to detect GH expression in 10 tissues and GH expression levels in the pituitary at six different growth stages, and also detected GH content in serum at different growth stages . qPCR showed that GH mRNA was detected in the liver, muscle, kidney, intestine, pituitary, olfactory bulb, stomach, heart, gill, and ovary. The highest level of P. argenteus GH mRNA was observed in the pituitary (P < 0.01, n = 3). At different growth stages, P. argenteus GH expression first increased, decreased, and increased again. GH gene expression levels and the variations of serum GH levels of P. argenteus were consistent with the growth rate and associated with the sexual maturity. In addition, in situ hybridization was used to locate the GH expression in pituitary. In situ hybridization showed that the GH‐positive cells were round, oval, or irregular and often gathered into groups or presented branches along the nerve fibers.  相似文献   

13.
A proliferation inducing ligand (APRIL) is a member of the TNF superfamily. It shares two receptors with B-cell activating factor (BAFF), B-cell maturation antigen (BCMA), and transmembrane activator and CAML interactor (TACI). Herein, the equine APRIL was identified from equine adipose-derived stem cell (ASC), and the protein expression of APRIL and its related molecules were detected during the adipogenic differentiation of equine ASC in vitro. The equine APRIL gene was located on chromosome 11, spans 1852 base pairs (bp). Its open reading frame covers 753 bp, encoding a 250-amino acid protein with the typical TNF structure domain. During the two weeks’ adipogenic differentiation of equine ASC, although the protein expression of APRIL and TACI had an insignificant change, that of BCMA increased significantly. Moreover, with the addition of recombinant protein His6-sAPRIL, a reduced differentiation of equine ASC toward adipocyte was detected. These results may provide the basis for investigating the role of APRIL in ASC adipogenic differentiation.  相似文献   

14.
二硫键形成蛋白A(Disulfide bond formation protein A,DsbA)是存在于大肠杆菌周质胞腔内的一种参与新生蛋白质折叠过程中催化二硫键形成的折叠酶。综述了DsbA三维结构、进化过程、协助蛋白质体内外复性方面的研究进展。DsbA比硫氧还原蛋白具有更强的氧化性,其强氧化性来自于Cys30残基异常低的pKa值和不稳定的氧化型结构,通过定点突变的研究表明了Cys30残基是DsbA活性中心最关键的氨基酸残基之一。DsbA不论在体内与目标蛋白融合表达还是在体外以折叠酶形式添加,都能有效地催化蛋白质的折叠复性,同时DsbA还具有部分分子伴侣的活性。  相似文献   

15.
S-Nitrosation is a post-translational modification of protein cysteine residues, which occurs in response to cellular oxidative stress. Although it is increasingly being linked to physiologically important processes, the molecular basis for protein regulation by this modification remains poorly understood. We used transient kinetic methods to determine a minimal mechanism for spontaneous S-nitrosoglutathione (GSNO)-mediated transnitrosation of human glutathione transferase (GST) P1-1, a major detoxification enzyme and key regulator of cell proliferation. Cys47 of GSTP1-1 is S-nitrosated in two steps, with the chemical step limited by a pre-equilibrium between the open and closed conformations of helix α2 at the active site. Cys101, in contrast, is S-nitrosated in a single step but is subject to negative cooperativity due to steric hindrance at the dimer interface. Despite the presence of a GSNO binding site at the active site of GSTP1-1, isothermal titration calorimetry as well as nitrosation experiments using S-nitrosocysteine demonstrate that GSNO binding does not precede S-nitrosation of GSTP1-1. Kinetics experiments using the cellular reductant glutathione show that Cys101-NO is substantially more resistant to denitrosation than Cys47-NO, suggesting a potential role for Cys101 in long term nitric oxide storage or transfer. These results constitute the first report of the molecular mechanism of spontaneous protein transnitrosation, providing insight into the post-translational control of GSTP1-1 as well as the process of protein transnitrosation in general.  相似文献   

16.
Human plasma protein S is a nonenzymatic cofactor for activated protein C (APC) in the inactivation of coagulation factors Va and VIIIa, and helps to provide an essential negative feedback on blood coagulation. Previous indirect evidence suggested that the thrombin-sensitive region (TSR:residues 47–75, 1 disulfide) and the first epidermal growth factorlike region (EGF1: residues 76–116, 3 disulfides) of protein S may be functionally important for expression of its APC cofactor activity. To study the functional importance of these modules directly, access to the isolated TSR and EGF1 modules would be preferred. Recombinant expression of protein S intact TSR and correctly folded EGF1 has not been possible. Here we describe the synthesis of both TSR and EGF1 modules by stepwise solid phase peptide synthesis using the in situ neutralization/2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate activation procedure for tert-butoxycarbonyl chemistry. For the TSR, correct intramodular disulfide bonding was confirmed. To overcome folding difficulties with the EGF1, a two-step oxidation procedure was used in which the cysteines involved in the middle, crossing, disulfide bond (Cys85-Cys102) remained protected with acetamidomethyl (Acm) groups after hydrogen fluoride treatment of the peptide resin. Selective formation of the first two disulfide bonds (Cys80-Cys93 and Cys104-Cys113) was followed by release of the Acm groups and subsequent formation of the third disulfide bond (Cys85-Cys102). CD studies revealed 54% of β-sheet/turn in the EGF1 that is characteristic for EGF modules. Deuterium exchange studies suggested a very tightly packed core in EGF1 that is not accessible to the bulk solvent, likely a result from the compact structure caused by its three disulfide bonds. The 30% β-sheet structure observed in the TSR involved amide protons that could be readily exchanged by deuterons, likely reflecting a more flexible structure of the TSR loop in contrast to the rigid structure of EGF1. The establishment of synthetic access to the TSR and EGF1 of protein S provides a versatile tool to study interactions of these modules with the blood coagulation components of the anticoagulant plasma protein C pathway. © 1998 John Wiley & Sons, Inc. Biopoly 46: 53–63, 1998  相似文献   

17.
The amino acid sequence of 6.5k-arginine/glutamate rich polypeptide (6.5k-AGRP) from the seeds of sponge gourd (Luffa cylindrica) has been determined. The 6.5k-AGRP consists of a 47-residue polypeptide chain containing two disulfide bonds, and a molecular mass calculated to be 5695 Da, which fully coincides with a value of [Μ + H] + = m/z 5693.39 obtained by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). The mass spectrometric evidence indicated that 6.5k-AGRP is also present partially truncated at the C-terminus. In our preparations, approximately half of the polypeptide molecules have the C-terminal sequence Arg-Arg-Glu-Val-Asp; the other half lack Val-Asp and end with the glutamic acid, making a total of 45 residues in the polypeptide chain. The two disulfide bonds connect Cys12 to Cys33 and Cys16 to Cys29. Comparison of the amino acid sequence of 6.5k-AGRP with those of the other known proteins included in the PIR protein sequence database showed that it is related to the amino acid sequence of the N-terminal region encoded by the first exon of the cocoa (Theobroma cacao) and cotton seeds vicilin genes, sharing a characteristic two Cys-Xaa-Xaa-Xaa-Cys motif.  相似文献   

18.
19.
Abstract: To assess the importance of the cysteine residues Cys347 and Cys351 in the carboxylic tail in the human D1 dopamine receptor, seven mutant receptors were constructed by PCR. The pharmacological and functional properties of the wild-type and mutant receptors were assessed following transient expression in COS-7 cells. Affinities for [3H]SCH 23390 of mutant S347 (Cys347→ Gly), T348 (Tyr348→ stop), S351 (Cys351→ Gly), T351 (Cys351→ stop), T352 (Pro352→ stop), and S347/S351 (Cys347→ Gly and Cys351→ Gly) were similar to that of wild-type receptor, whereas the expression levels were reduced up to 80%. The potency of dopaminergic antagonists for these mutant receptors was very similar to that of the wild-type receptor. However, mutant T347 (Cys347→ stop) showed a 15–25-fold reduced affinity for the antagonists SCH 23390, (+)-butaclamol, and cis-flupentixol, thus not allowing radioligand analysis. Wild-type and mutant receptors responded dose-dependently with similar potency to dopamine and SKF 38393 with an increased adenylyl cyclase activity. However, mutant receptors with the Cys347 residue changed or removed displayed a diminished ability to activate adenylyl cyclase. Dopamine preexposure desensitized wild-type and mutant S351 receptors. However, mutant receptors with Cys347 replaced or the distal part of the carboxyl tail removed were unable to desensitize. Thus, Cys347 in the cytoplasmic tail of the human D1 dopamine receptor is important for the receptor in maintaining the conformation for antagonist binding, to play a crucial role in activation of adenylyl cyclase, and to be essential for agonist-induced desensitization.  相似文献   

20.
C-type lectins play crucial roles in pathogen recognition, innate immunity, and cell–cell interactions. In this study, a new C-type lectin (Ec-CTL) gene was cloned from grouper, Epinephelus coioides by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of Ec-CTL was composed of 840 bp with a 651 bp open reading frame (ORF) that encodes a 216-residue protein. The deduced amino acid sequence of Ec-CTL possessed all conserved features crucial for the fundamental structure, such as the four cysteine residues (Cys71, Cys152, Cys167, Cys175) involved in the formation of disulphide bridges and the potential Ca2+/carbohydrate-binding sites. Ec-CTL contains a signal peptide and a single carbohydrate recognition domain (CRD). The genomic DNA of the gene consists of three exons and two introns. Ec-CTL showed high similarity of 54% to the C-type lectin of killifish Fundulus heteroclitus. Ec-CTL mRNA is predominately expressed in liver and skin, and lower expressed in kidney, intestine, heart, brain and spleen. The expression of Ec-CTL was differentially up-regulated in orange-spotted grouper challenged with Saccharomyces cerevisiae, Vibrio vulnificus, Staphyloccocus aureus and Singapore grouper iridovirus (SGIV). Recombinant mature Ec-CTL (rEc-CTL) was expressed in E. coli BL21, purified and characterized as a typical Ca2+-dependent carbohydrate-binding protein possessing hemagglutinating activity. It bound to all examined bacterial and yeast strains, and aggregated with S. cerevisiae, V. vulnificus and S. aureus in a Ca2+-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号