共查询到20条相似文献,搜索用时 0 毫秒
1.
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota‐derived signals and molecules influence another key player maintaining intestinal homeostasis—the intestinal stem cell niche, which regulates epithelial self‐renewal. In this review, the literature on gut microbiota‐host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon. 相似文献
2.
3.
肠道是最复杂的器官之一,负责营养的吸收和消化。肠道具有多层结构保护整个肠道免受病原体的侵害。肠道上皮是由单层柱状上皮细胞组成,是抵抗病原体的第一道屏障。因此,肠上皮必须保持完整性以保护肠免受感染和毒性剂的侵害。上皮细胞分为两个谱系(吸收型与分泌型),并且每隔3~4天脱落至肠腔中。细胞的快速更替是由于肠道干细胞的存在,肠道干细胞排列在隐窝底部终极分化的潘氏细胞之间并沿隐窝绒毛轴分化成不同的上皮细胞。一旦肠道干细胞受到损伤,潘氏细胞将通过提供WNT配体和Notch刺激来补充肠道干细胞。因此,潘氏细胞充当辅助细胞以维持干细胞微环境,即生态位。该综述探讨了干细胞和潘氏细胞之间的相互作用,进一步探讨了维持肠道稳态的信号通路。 相似文献
4.
5.
6.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2336-2338
MLCTs, which are randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule, showed significantly higher acyl-CoA dehydrogenase activity when measured by using butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA as substrates than long-chain triacylglycerol one hour after a single administration to rats. These results suggest that not only medium-chain fatty acid oxidation, but also long-chain fatty acid oxidation were increased in the liver of rats administered with MLCT. 相似文献
7.
8.
Irani Khatun Ronald W. Clark Nicholas B. Vera Kou Kou Derek M. Erion Timothy Coskran Walter F. Bobrowski Carlin Okerberg Bryan Goodwin 《The Journal of biological chemistry》2016,291(6):2602-2615
Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3−/−) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3−/− mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3−/− mice. Gpat3−/− enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3−/− mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism. 相似文献
9.
10.
11.
Laura Lukjanenko Sonia Karaz Pascal Stuelsatz Uxia Gurriaran-Rodriguez Joris Michaud Gabriele Dammone Federico Sizzano Omid Mashinchian Sara Ancel Eugenia Migliavacca Sophie Liot Guillaume Jacot Sylviane Metairon Frederic Raymond Patrick Descombes Alessio Palini Benedicte Chazaud Michael A. Rudnicki Jerome N. Feige 《Cell Stem Cell》2019,24(3):433-446.e7
12.
13.
Eugenia Sergeev Anders H?jgaard Hansen Sunil K. Pandey Amanda E. MacKenzie Brian D. Hudson Trond Ulven Graeme Milligan 《The Journal of biological chemistry》2016,291(1):303-317
Short chain fatty acids (SCFAs) are produced in the gut by bacterial fermentation of poorly digested carbohydrates. A key mediator of their actions is the G protein-coupled free fatty acid 2 (FFA2) receptor, and this has been suggested as a therapeutic target for the treatment of both metabolic and inflammatory diseases. However, a lack of understanding of the molecular determinants dictating how ligands bind to this receptor has hindered development. We have developed a novel radiolabeled FFA2 antagonist to probe ligand binding to FFA2, and in combination with mutagenesis and molecular modeling studies, we define how agonist and antagonist ligands interact with the receptor. Although both agonist and antagonist ligands contain negatively charged carboxylates that interact with two key positively charged arginine residues in transmembrane domains V and VII of FFA2, there are clear differences in how these interactions occur. Specifically, although agonists require interaction with both arginine residues to bind the receptor, antagonists require an interaction with only one of the two. Moreover, different chemical series of antagonist interact preferentially with different arginine residues. A homology model capable of rationalizing these observations was developed and provides a tool that will be invaluable for identifying improved FFA2 agonists and antagonists to further define function and therapeutic opportunities of this receptor. 相似文献
14.
Georgios Kalamakis Daniel Brüne Srikanth Ravichandran Jan Bolz Wenqiang Fan Frederik Ziebell Thomas Stiehl Francisco Catalá-Martinez Janina Kupke Sheng Zhao Enric Llorens-Bobadilla Katharina Bauer Stefanie Limpert Birgit Berger Urs Christen Peter Schmezer Jan Philipp Mallm Benedikt Berninger Ana Martin-Villalba 《Cell》2019,176(6):1407-1419.e14
15.
16.
17.
Amabel M. Orogo Eileen R. Gonzalez Dieter A. Kubli Igor L. Baptista Sang-Bing Ong Tomas A. Prolla Mark A. Sussman Anne N. Murphy ?sa B. Gustafsson 《The Journal of biological chemistry》2015,290(36):22061-22075
Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential. 相似文献
18.
19.