首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
天冬氨酰蛋白酶(β-site amyloid precursor protein cleaving enzyme 1, BACE1)作为治疗阿尔兹海默症的潜在靶点,其抑制剂的开发已成为医学领域的重要研究方向。本文以59个氨基恶唑啉呫吨类BACE1抑制剂为研究对象,运用比较分子相似性指数(comparative molecular similarity index, CoMSIA)和分子对接方法,深入挖掘影响抑制剂活性的特征结构,以及抑制剂与BACE1间的结合模式和作用力类型,并以此为基础设计新型抑制剂并预测其活性。CoMSIA模拟结果表明,由立体场、静电场、疏水场和氢键供体场4个场组合建立的构效关系模型具有较强的预测能力,交叉验证相关系数Q2=0.48, 非交叉验证相关系数Rncv2=0.94, 外部预测相关系数Rpre2=0.85;通过分子对接,发现抑制剂占据了靶标的S3、S1和S2'位点,与BACE1之间的结合主要是通过氢键作用力和π-π堆积作用实现的;占据S2'位点的R取代基是立体场、静电场和疏水场影响的敏感区域,氨基恶唑啉核心官能团是氢键供体场的敏感区域。基于以上分析获得的抑制剂特征结构信息及其与蛋白质受体的作用机制,成功设计出了新的分子并预测了抑制活性。实验所得模型和信息,为后续新型BACE1抑制剂的结构优化和改造提供了重要理论依据  相似文献   

2.
The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used as treatment of depression and anxiety disorders or as psychostimulant drugs of abuse. Despite their clinical importance, the molecular mechanisms by which various types of antidepressant drugs bind and inhibit SERT and NET are still elusive for the majority of the inhibitors, including the molecular basis for SERT/NET selectivity. Mutational analyses have suggested that a central substrate binding site (denoted the S1 pocket) also harbors an inhibitor binding site. In this study, we determine the effect of mutating six key S1 residues in human SERT (hSERT) and NET (hNET) on the potency of 15 prototypical SERT/NET inhibitors belonging to different drug classes. Analysis of the resulting drug sensitivity profiles provides novel information on drug binding modes in hSERT and hNET and identifies specific S1 residues as important molecular determinants for inhibitor potency and hSERT/hNET selectivity.  相似文献   

3.
Thiol proteinase inhibitors in rat serum were purified and their properties were compared with those of rat liver thiol proteinase inhibitor. The inhibitors in rat serum were separated into three forms (S-1, S-2, and S-3) by linear gradient elution from a DE52 column. One inhibitor (S1) was purified to homogeneity by chromatography on ficin-bound Sepharose and Sephadex G-150 columns. The apparent molecular weights of S1, S2, and S3 on Sephadex G-150 columns were 90,000, 95,000, and 160,000, respectively. Serum thiol proteinase inhibitor and liver thiol proteinase differed in the following: 1) all three forms of serum inhibitor had much higher molecular weights than the liver thiol proteinase inhibitor (Mr = 12,500); 2) no cross-reactivity was observed between serum inhibitors and liver inhibitor in tests with either antiserum inhibitor or anti-liver antiserum; 3) both serum inhibitor and liver inhibitor were specific for thiol proteinases, but had different inhibition spectra; 4) the liver inhibitor did not bind to concanavalin A-Sepharose, whereas the serum inhibitor bound and was eluted with alpha-methyl mannoside. A thiol proteinase inhibitor of high molecular weight detected in tissue homogenates inhibited papain markedly but did not inhibit cathepsin H. Its activity was diminished by perfusion of the organ, indicating that it is derived from serum.  相似文献   

4.
IMP-1 metallo-beta-lactamase (class B) is a plasmid-borne zinc metalloenzyme that efficiently hydrolyzes beta-lactam antibiotics, including carbapenems, rendering them ineffective. Because IMP-1 has been found in several clinically important carbapenem-resistant pathogens, there is a need for inhibitors of this enzyme that could protect broad spectrum antibiotics such as imipenem from hydrolysis and thus extend their utility. We have identified a series of 2,3-(S,S)-disubstituted succinic acids that are potent inhibitors of IMP-1. Determination of high resolution crystal structures and molecular modeling of succinic acid inhibitor complexes with IMP-1 has allowed an understanding of the potency, stereochemistry, and structure-activity relationships of these inhibitors.  相似文献   

5.
Three-dimensional quantitative structure-activity relationship models have been derived using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and molecule docking for the training sets of galardin-based matrix metalloproteinase inhibitors (MMPIs). The statistical values for the best models are significant. The models showed that the steric effect near the S1' pocket and hydrogen-bonding effect of the zinc binding group play key roles on the inhibitory activity of gelatinase A. The sets of the training and test proved the models were stable and predictive, and may have a good prediction for the inhibition activities of galardin derivatives as gelatinase A inhibitors. The results not only lead to a better understanding of the molecular mechanisms and structural requirements of gelatinase A inhibitors but also can help to design novel inhibitors against gelatinase A.  相似文献   

6.
To characterize the inhibitory specificity of angiotensin converting enzyme (ACE) inhibitors for matrix metalloproteinase 9 (MMP-9) activity, molecular modeling of these complex was performed referring the recent X-ray structure analyses using lisinopril as an ACE inhibitor. Two interaction modes differing in the orientation of the inhibitor on the active site were identified. Lisinopril was effectively stabilized by specific hydrogen bonds and hydrophobic interactions in the active site of MMP-9, and its hydrophobic group appeared to interact preferentially with the S1 site compared with the S1' site. These findings showed that ACE inhibitors could become important seeds for cardiovascular protection and the development of MMP inhibitors.  相似文献   

7.
A fundamental issue related to therapy of HIV-1 infection is the emergence of viral mutations which severely limits the long term efficiency of the HIV-protease (HIV-PR) inhibitors. Development of new drugs is therefore continuously needed. Chemoinformatics enables to design and discover novel molecules analogous to established drugs using computational tools and databases. Saquinavir, an anti-HIV Protease drug is administered for HIV therapy. In this work chemoinformatics tools were used to design structural analogs of Saquinavir as ligand and molecular dockings at AutoDock were performed to identify potential HIV-PR inhibitors. The analogs S1 and S2 when docked with HIV-PR had binding energies of -4.08 and -3.07 kcal/mol respectively which were similar to that for Saquinavir. The molecular docking studies revealed that the changes at N2 of Saquinavir to obtain newly designed analogs S1 (having N2 benzoyl group at N1) and S2 (having 3-oxo-3phenyl propanyl group at N2) were able to dock with HIV-PR with similar affinity as that of Saquinavir. Docking studies and computationally derived pharmacodynamic and pharmacokinetic properties׳ comparisons at ACD/I-lab establish that analog S2 has more potential to evade the problem of drug resistance mutation against HIV-1 PR subtype-A. S2 can be further developed and tested clinically as a real alternative drug for HIV-1 PR across the clades in future.  相似文献   

8.
Checkpoint kinase 1 (Chk1), a kind of a serine/threonine protein kinase, plays a significant role in DNA damage-induced checkpoints. Chk1 inhibitors have been demonstrated to abrogate the S and G2 checkpoints and disrupt the DNA repair process, which results in immature mitotic progression, mitotic catastrophe, and cell death. Normal cells remain at the G1 phase via p53 to repair their DNA damages, and are less influenced by the abrogation of S and G2 checkpoint. Therefore, selective inhibitors of Chk1 may be of great therapeutic value in cancer treatment. In this paper, in order to understand the structure-activity relationship of macro-cyclic urea Chk1 inhibitors, a study combined molecular docking and 3D-QSAR modeling was carried out, which resulted in two substructure-based 3D-QSAR models, including the CoMFA model (r(2), 0.873; q(2), 0.572) and CoMSIA model (r(2), 0.897; q(2), 0.599). The detailed microscopic structures of Chk1 binding with inhibitors were performed by molecular docking. Two docking based 3D-QSAR models were developed (CoMFA with r(2), 0.887; q(2), 0.501; CoMSIA with r(2), 0.872; q(2), 0.520). The contour maps obtained from the 3D-QSAR models in combination with the docked binding structures would be helpful to better understand the structure-activity relationship. All the conclusions drawn from both the 3D-QSAR contour maps and molecular docking were in accordance with the experimental activity dates. The results suggested that the developed models and the obtained CHk1 inhibitor binding structures might be reliable to predict the activity of new inhibitors and reasonable for the future drug design.  相似文献   

9.
The p70 S6 ribosomal protein kinase 1 (S6K) is a substrate and effector of the mammalian target of rapamycin (mTOR). The mTOR/S6K pathway is implicated in cancer and metabolic disorders. To study the molecular regulation of S6K and identify specific inhibitors, availability of active recombinant S6K and robust enzyme assays are critically needed. To date, however, expression of active recombinant S6K has not been feasible as S6K activation requires a cascade of phosphorylation events. We have compared several engineered S6K enzymes. Expression of the Flag-S6KDeltaCT(T389E) in HEK293 cells resulted in a highly active S6K that was constitutively phosphorylated on T229 in the activation-loop (T-loop). The active enzyme was readily purified in large scale by anti-Flag affinity chromatography achieving a high purity. We developed a high capacity homogeneous time-resolved fluorescence resonance energy transfer. Lance assay for measurement of substrate phosphorylation and analysis of kinetic parameters. The Michaelis constant (Km) values of S6K for ATP and the Biotin-S6 substrate peptide were determined to be 21.4+/-0.29 and 0.9+/-0.48 microM, respectively. The Lance assay was further validated with a diverse panel of literature inhibitors, in which the PKC inhibitors staurosporine, Ro-318220, and the PKA inhibitor Balanol potently inhibited S6K. Dose-response and inhibition mechanism by these inhibitors were also studied. Our data provide a new simplified strategy to achieve rapid production of active S6K and demonstrate utility of the Lance assay for S6K enzyme screen in searching for specific inhibitors.  相似文献   

10.
Rational design and synthesis of selective BACE-1 inhibitors   总被引:4,自引:0,他引:4  
An effective approach for enhancing the selectivity of beta-site amyloid precursor protein cleaving enzyme (BACE 1) inhibitors is developed based on the unique features of the S1' pocket of the enzyme. A series of low molecular weight (<600) compounds were synthesized with different moieties at the P1' position. The selectivity of BACE 1 inhibitors versus cathepsin D and renin was enhanced 120-fold by replacing the hydrophobic propyl group with a hydrophilic propionic acid group.  相似文献   

11.
Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.  相似文献   

12.
Accumulating evidence has demonstrated the importance of alternative splicing in various physiological processes, including the development of different diseases. CDC-like kinases (CLKs) and serine-arginine protein kinases (SRPKs) are components of the splicing machinery that are crucial for exon selection. The discovery of small molecule inhibitors against these kinases is of significant value, not only to delineate the molecular mechanisms of splicing, but also to identify potential therapeutic opportunities. Here we describe a series of small molecules that inhibit CLKs and SRPKs and thereby modulate pre-mRNA splicing. Treatment with these small molecules (Cpd-1, Cpd-2, or Cpd-3) significantly reduced the levels of endogenous phosphorylated SR proteins and caused enlargement of nuclear speckles in MDA-MB-468 cells. Additionally, the compounds resulted in splicing alterations of RPS6KB1 (S6K), and subsequent depletion of S6K protein. Interestingly, the activity of compounds selective for CLKs was well correlated with the activity for modulating S6K splicing as well as growth inhibition of cancer cells. A comprehensive mRNA sequencing approach revealed that the inhibitors induced splicing alterations and protein depletion for multiple genes, including those involved in growth and survival pathways such as S6K, EGFR, EIF3D, and PARP. Fluorescence pulse-chase labeling analyses demonstrated that isoforms with premature termination codons generated after treatment with the CLK inhibitors were degraded much faster than canonical mRNAs. Taken together, these results suggest that CLK inhibitors exhibit growth suppression and apoptosis induction through splicing alterations in genes involved in growth and survival. These small molecule inhibitors may be valuable tools for elucidating the molecular machinery of splicing and for the potential development of a novel class of antitumor agents.  相似文献   

13.
To provide hints for the design of novel acetylcholinesterase (AChE) inhibitors with higher potency and specificity, the binding modes of the (RS, S)-17b and (RS, R)-17b enantiomers on AChE were chosen to investigate by molecular docking and molecular dynamics simulation. The results show that the binding modes of (RS, S)-17b and (RS, R)-17b are clearly different from each other. In particular, the (RS, S)-17b and (RS, R)-17b enantiomers tend to be planar and bend conformations to interact with AChE, respectively. Furthermore, based on the binding mode on AChE and structure modification of (RS, S)-17b, two novel inhibitors (1 and 2) with higher inhibitory activity were designed. Our design strategy suggests that the number of N and O atoms should be increased, the 5, 6-dimethoxy should be transformed into ring and the indanone moiety should be ring-opening, which would result in generating potent and selective AChE inhibitors.  相似文献   

14.
Peterson FC  Gordon NC  Gettins PG 《Biochemistry》2001,40(21):6275-6283
We describe here the high-level expression of bovine trypsinogen in E. coli, its refolding and activation to beta-trypsin, and the selective incorporation of (15)N-labeled alanine through supplementation of the growth medium. Using this procedure, we expressed (15)N-labeled S195A trypsinogens, both on a wild-type and on a D189S background, in amounts suitable for NMR spectroscopy. 2D [(1)H-(15)N]-HSQC NMR was used to follow conformational changes upon activation of trypsinogen and formation of noncovalent complexes between S195A or S195A/D189S trypsin and protein proteinase inhibitors of different structural families and different sizes, as well as to examine the effects of introduction of the D189S mutation. Spectra of good quality were obtained for both trypsins alone and in complexes of increasing size with the proteinase inhibitors BPTI (total molecular mass 31 kDa), SBTI (total molecular mass 44 kDa), and the serpin alpha(1)-proteinase inhibitor Pittsburgh (alpha(1)PI Pittsburgh) (total molecular mass 69 kDa). Assignments of alanines 55 and 56, close to the active site histidine, and of alanine 195, present in the S195A variant used for most of the studies, were made by mutagenesis. These three alanines, together with two others, probably close to the S1 specificity pocket, were very sensitive to complex formation. In contrast, the remaining 10 alanines were invariant in chemical shift in all 3 of the noncovalent complexes formed, reflecting the conservation of structure in complexes with BPTI and SBTI known from X-ray crystal structures, but also indicating that there is no change in backbone conformation for the noncovalent complex with alpha(1)PI, for which there is no crystal structure. This was true both for S195A and for S195A/D189S trypsins. This high-level expression and labeling approach will be of great use for solution NMR studies on trypsin-serpin complexes, as well as for structural and mechanistic studies on trypsin variants.  相似文献   

15.
16.
The inhibition effects of enantiomerically pure alpha-(N-benzylamino)benzylphosphonic acids and their derivatives on human prostatic acid phosphatase have been investigated. As expected, (R)-alpha-(N-benzylamino)benzylphosphonic acid demonstrated higher affinity for the enzyme than (S)-enantiomer. At the same time, (1R,2S)-phenyl[(1-phenylethyl)amino]methylphosphonic acid was found to be a significantly weaker inhibitor than its (1S,2R)-analogue. The enantioselectivity has been explained using a molecular modeling approach by computational docking of inhibitors into active center of prostatic acid phosphatase.  相似文献   

17.
The results of molecular analysis of 15 influenza A(H3N2) and 17-A(H1N1) epidemic strains isolated in the Russian Federation in 1995-2007 are described. The analysis on the M2 and neuraminidase influenza A virus genes was performed. The M2 sequences analysis among the remantadin resistant viruses demonstrated the S31N substitution in all strains. Besides S31N substitution, additional mutations were detected in both proteins. Mutations associated with S31N substitution were detected in each virus subtype, which may be considered as new markers for the identification of remantadin-resistant strains. The sequencing of the NA segments from all viruses showed no amino acid substitutions known to cause resistance to neuraminidase inhibitors, which indicates susceptibility to NA inhibitors among the strains.  相似文献   

18.
The high resolution crystallographic structure of MCTI-II complexed with beta trypsin (PDB entry 1MCT) was used to model the corresponding structures of the six inhibitor peptides belonging to Cucurbitaceae family (MCTI-I, LA-1, LA-2, CMTI-I, CMTI-III, CMTI-IV). Two model inhibitors, LA-1 and LA-2 were refined by molecular dynamics to estimate the average solution structure. The difference accessible surface area (DASA) study of the inhibitors with and without trypsin revealed the Arginine and other residues of the inhibitors which bind to trypsin. The hydration dynamics study of LA1 and LA2 also confirm the suitability of water molecules at the active Arg site. Moreover, the presence of a unique 3D-structural motif comprises with the four CPRI residues from the amino terminal is thought to be conserved in all the six studied inhibitors, which seems essential for the directional fixation for proper complexation of the Arg (5) residue towards the trypsin S1-binding pocket. The role of the disulphide linkage in the geometrical stabilization of CPRI (Cysteine, Proline, Arginine, Isoleucine) motif has also been envisaged from the comparative higher intra molecular Cys (3) -Cys (20) disulphide dihedral energies.  相似文献   

19.
Two conformationally constrained templates have been designed to provide selective inhibitors of the coagulation cascade serine protease, Factor Xa (FXa). The most active inhibitor, 2,7-bis[(Z)-p-amidinobenzylidene)]-3,3,6,6-tetramethylcycloheptanone, exhibits a K(i) of 42 nM against FXa, with strong selectivity against thrombin (1000-fold), trypsin (300-fold) and plasmin (900-fold). With only two freely rotatable bonds, molecular modeling suggests that one amidine group is positioned into the S1 pocket, forming hydrogen bonds with the side chain of Asp189, similar to other amidine-based inhibitors, with the second benzamidine positioned into the S4 pocket in a position to form strong cation-pi bonding with the S4 aryl cage. We suggest that this interaction plays an important role in the specificity of these inhibitors against other serine proteases.  相似文献   

20.
Human T-cell leukemia virus type-1 (HTLV-1) is associated with a number of human diseases. Based on the therapeutic success of human immunodeficiency virus type 1 (HIV-1) PR inhibitors, the proteinase (PR) of HTLV-1 is a potential target for chemotherapy. To facilitate the design of potent inhibitors, the subsite specificity of HTLV-1 PR was characterized and compared to that of HIV-1 PR. Two sets of substrates were used that contained single amino-acid substitutions in peptides representing naturally occurring cleavage sites in HIV-1 and HTLV-1. The original HIV-1 matrix/capsid cleavage site substrate and most of its substituted peptides were not hydrolyzed by the HTLV-1 enzyme, except for those with hydrophobic residues at the P4 and P2 positions. On the other hand, most of the peptides representing the HTLV-1 capsid/nucleocapsid cleavage site were substrates of both enzymes. A large difference in the specificity of HTLV-1 and HIV-1 proteinases was demonstrated by kinetic measurements, particularly with regard to the S4 and S2 subsites, whereas the S1 subsite appeared to be more conserved. A molecular model of the HTLV-1 PR in complex with this substrate was built, based on the crystal structure of the S9 mutant of Rous sarcoma virus PR, in order to understand the molecular basis of the enzyme specificity. Based on the kinetics of shortened analogs of the HTLV-1 substrate and on analysis of the modeled complex of HTLV-1 PR with substrate, the substrate binding site of the HTLV-1 PR appeared to be more extended than that of HIV-1 PR. Kinetic results also suggested that the cleavage site between the capsid and nucleocapsid protein of HTLV-1 is evolutionarily optimized for rapid hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号