首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The DNA-processing region of the Enterococcus faecalis pheromone-responsive plasmid pCF10 is highly similar to that of the otherwise unrelated plasmid pRS01 from Lactococcus lactis. A transfer-proficient pRS01 derivative was unable to mobilize plasmids containing the pCF10 origin of transfer, oriT. In contrast, pRS01 oriT-containing plasmids could be mobilized by pCF10 at a low frequency. Relaxases PcfG and LtrB were both capable of binding to single-stranded oriT DNAs; LtrB was highly specific for its cognate oriT, whereas PcfG could recognize both pCF10 and pRS01 oriT. However, pcfG was unable to complement an ltrB insertion mutation. Genetic analysis showed that pcfF of pCF10 and ltrF of pRS01 are also essential for plasmid transfer. Purified PcfF and LtrF possess double-stranded DNA binding activities for the inverted repeat within either oriT sequence. PcfG and LtrB were recruited into their cognate F-oriT DNA complex through direct interactions with their cognate accessory protein. PcfG also could interact with LtrF when pCF10 oriT was present. In vivo cross-complementation analysis showed that ltrF partially restored the pCF10DeltapcfF mutant transfer ability when provided in trans, whereas pcfF failed to complement an ltrF mutation. Specificity of conjugative DNA processing in these plasmids involves both DNA-protein and protein-protein interactions.  相似文献   

2.
Cryptic plasmid pRK2 of the strain Escherichia coli W (ATCC 9637), an ancestor of production strains for penicillin G acylase, was sequenced and characterized. Based on the data on replication region and origin (ori sequence AAC, 924-926nt), the plasmid was classified as ColE1-like plasmid. DNA sequence analysis revealed five orfs hypothetical products of which shared a significant sequence similarity with putative proteins encoded by DNA of plasmid pColE1. orf1 codes for protein Rom involved in the control of plasmid replication, orfs 2-5 code for putative mobilization proteins (Mob A-D) that show a high level of similarity with the ones encoded by DNA of plasmids pColE1 and pLG13 (E. coli), pECL18 and pEC01 (Enterobacter cloacae), pSFD10 (Salmonella choleraesuis), and pScol7 (Shigella sonnei). Recombinant plasmids pRS11 (4.91kbp), pRS12 (4.91kbp), pRS2 (2.996kbp), and pRS3 (2.623kbp) that bear the Spectinomycin resistance determinant (Spc(R)) were prepared on the basis of nucleotide sequence of pRK2. These constructs are stably maintained in the population of E. coli cells grown in the absence of the selection pressure for 63 generations. The copy number of Spc(R) constructs in E. coli host grown in antibiotic-free LB medium ranges from 25 to 40 molecules per chromosomal equivalent.  相似文献   

3.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

4.
Plasmid pTC-F14 is a 14.2-kb plasmid isolated from Acidithiobacillus caldus that has a replicon that is closely related to the promiscuous, broad-host-range IncQ family of plasmids. The region containing the mobilization genes was sequenced and encoded five Mob proteins that were related to those of the DNA processing (Dtr or Tra1) region of IncP plasmids rather than to the three-Mob-protein system of the IncQ group 1 plasmids (e.g., plasmid RSF1010 or R1162). Plasmid pTC-F14 is the second example of an IncQ family plasmid that has five mob genes, the other being pTF-FC2. The minimal region that was essential for mobilization included the mobA, mobB, and mobC genes, as well as the oriT gene. The mobD and mobE genes were nonessential, but together, they enhanced the mobilization frequency by approximately 300-fold. Mobilization of pTC-F14 between Escherichia coli strains by a chromosomally integrated RP4 plasmid was more than 3,500-fold less efficient than the mobilization of pTF-FC2. When both plasmids were coresident in the same E. coli host, pTC-F14 was mobilized at almost the same frequency as pTF-FC2. This enhanced pTC-F14 mobilization frequency was due to the presence of a combination of the pTF-FC2 mobD and mobE gene products, the functions of which are still unknown. Mob protein interaction at the oriT regions was unidirectionally plasmid specific in that a plasmid with the oriT region of pTC-F14 could be mobilized by pTF-FC2 but not vice versa. No evidence for any negative effect on the transfer of one plasmid by the related, potentially competitive plasmid was obtained.  相似文献   

5.
The nucleotide sequence of the DNA mobilization region of the 5-nitroimidazole resistance plasmid pIP421, from strain BF-F239 of Bacteroides fragilis, was determined. It contains a putative origin of transfer (oriT) including three sets of inverted repeats and two sequences reminiscent of specific integration host factor binding sites. The product of the mobilization gene mob421 (42.2 kDa) is a member of the Bacteroides mobilization protein family, which includes the MobA of pBI143, NBUs, and Tn4555. Sequence similarity suggests that it has both oriT binding and nicking activities. The transfer frequency of pIP421 in a B. fragilis donor strain possessing a Tc(r) or Tc(r) Em(r)-like conjugative transposon was significantly enhanced by tetracycline. Moreover, the mobilization region of pIP421 confers the ability to be mobilized from Escherichia coli by an IncP plasmid.  相似文献   

6.
Streptococcal plasmid pIP501 has a functional oriT site.   总被引:7,自引:3,他引:4       下载免费PDF全文
DNA sequence analysis suggested the presence of a plasmid transfer origin-like site (oriT) in the gram-positive conjugative plasmid pIP501. To test the hypothesis that the putative oriT site in pIP501 played a role in conjugal transfer, we conducted plasmid mobilization studies in Enterococcus faecalis. Two fragments, 49 and 309 bp, which encompassed the oriT region of pIP501, were cloned into pDL277, a nonconjugative plasmid of gram-positive origin. These recombinant plasmids were mobilized by pVA1702, a derivative of pIP501, at a frequency of 10(-4) to 10(-5) transconjugants per donor cell, while pDL277 was mobilized at a frequency of 10(-8) transconjugants per donor cell. These results indicated that the oriT-like site was needed for conjugal mobilization. To demonstrate precise nicking at the oriT site, alkaline gel and DNA-sequencing analyses were performed. Alkaline gel electrophoresis results indicated a single-stranded DNA break in the predicted oriT site. The oriT site was found upstream of six open reading frames (orf1 to orf6), each of which plays a role in conjugal transfer. Taken together, our conjugal mobilization data and the in vivo oriT nicking seen in Escherichia coli argue compellingly for the role of specific, single-stranded cleavage in plasmid mobilization. Thus, plasmid mobilization promoted by pVA1702 (pIP501) works in a fashion similar to that known to occur widely in gram-negative bacteria.  相似文献   

7.
Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is induced by certain opines secreted from crown galls. On transmissible plasmids, DNA transfer initiates within a cis-acting site, the origin of conjugal transfer, or oriT. We have localized an oriT on the A. tumefaciens plasmid pTiC58 to a region containing the conjugal transfer loci traI and traII and acc, which is the locus encoding catabolism of the two conjugal opines, agrocinopines A and B. The smallest functional oriT clone, a 65-bp BamHI-ApaI fragment in the recombinant plasmid pDCBA60-11, mapped within the traII locus. The nucleotide sequence for a 665-bp KpnI-EcoRI fragment with oriT activity was determined. DNA sequence alignments showed identities between the pTiC58 oriT and the transfer origins of RSF1010, pTF1, and RK2/RP4 and with the pTiC58 T-region borders. The RSF1010-like sequence on pTiC58 is located in the smallest active oriT clone of pTiC58, while the sequence showing identities with the oriT regions of RK2/RP4 and with T-region borders maps outside this region. Despite their sequence similarities, pTiC58 oriT clones were not mobilized by RP4; nor could vectors containing the RK2/RP4 oriT region or the oriT-mob region from RSF1010 be mobilized by pTiC58. In contrast, other Ti plasmids and a conjugally active Agrobacterium opine catabolic plasmid, pAtK84b, efficiently mobilized pTiC58 oriT clones. In addition, the RSF1010 derivative, pDSK519, was mobilized at moderate frequencies by an Agrobacterium strain harboring only the cryptic plasmid pAtC58 and at very low frequencies by an Agrobacterium host that does not contain any detectable plasmids.  相似文献   

8.
Dunn AK  Martin MO  Stabb EV 《Plasmid》2005,54(2):114-134
Most Vibrio fischeri strains isolated from the Euprymna scolopes light organ carry plasmids, often including both a large (>40kb) plasmid, and one or more small (<12kb) plasmids. The large plasmids share homology with pES100, which is the lone plasmid in V. fischeri type strain ES114. pES100 appears to encode a conjugative system similar to that on plasmid R721. The small plasmids lack extensive similarity to pES100, but they almost always occur in cells that also harbor a large plasmid resembling pES100. We found that many or all of these small plasmids share homology with pES213, a plasmid in strain ES213. We determined the 5501-bp pES213 sequence and generated selectable antibiotic resistance encoding pES213 derivatives, which enabled us to examine replication, retention, and transfer in V. fischeri. An 863-bp fragment of pES213 with features characteristic of theta-type replicons conferred replication without requiring any pES213 open reading frame (ORF). We estimated that pES213 derivatives were maintained at 9.4 copies per genome, which corresponds well with a model of random plasmid segregation to daughter cells and the approximately 10(-4) per generation frequency of plasmid loss. pES213 derivatives mobilized between V. fischeri strains at frequencies up to approximately 10(-4) in culture and in the host, apparently by employing the pES100 conjugative apparatus. pES213 carries two homologs of the putative pES100 origin of transfer (oriT), and V. fischeri strains lacking the pES100 conjugative relaxase, including a relaxase mutant, failed to serve as donors for transmission of pES213 derivatives. In other systems, genes directing conjugative transfer can function in trans to oriT, so it was noteworthy that ORFs adjacent to oriT, VFB51 in pES100 and traYZ in pES213, enhanced transfer 100- to 1000-fold when provided in cis. We also identified and disrupted the V. fischeri recA gene. RecA was not required for stable pES213 replication but surprisingly was required in donors for efficient transfer of pES213 derivatives. These studies provide an explanation for the prevalence and co-occurrence of pES100- and pES213-type plasmids, illuminate novel elements of pES213 mobilization, and provide the foundation for new genetic tools in V. fischeri.  相似文献   

9.
A 3.4-kb cryptic plasmid was obtained from a new isolate of Rhodobacter blasticus. This plasmid, designated pMG160, was mobilizable by the conjugative strain Escherichia coli S17.1 into Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas palustris. It replicated in the latter strains but not in Rhodospirillum rubrum, Rhodocyclus gelatinosus, or Bradyrhizobium species. Plasmid pMG160 was stably maintained in R. sphaeroides for more than 100 generations in the absence of selection but showed segregational instability in R. palustris. Instability in R. palustris correlated with a decrease in plasmid copy number compared to the copy number in R. sphaeroides. The complete nucleotide sequence of plasmid pMG160 contained three open reading frames (ORFs). The deduced amino acid sequences encoded by ORF1 and ORF2 showed high degrees of homology to the MobS and MobL proteins that are involved in plasmid mobilization of certain plasmids. Based on homology with the Rep protein of several other plasmids, ORF3 encodes a putative rep gene initiator of plasmid replication. The functions of these sequences were demonstrated by deletion mapping, frameshift analysis, and analysis of point mutations. Two 6.1-kb pMG160-based E. coli-R. sphaeroides shuttle cloning vectors were constructed and designated pMG170 and pMG171. These two novel shuttle vectors were segregationally stable in R. sphaeroides growing under nonselective conditions.  相似文献   

10.
Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.  相似文献   

11.
Mobilizable shuttle plasmids containing the origin of transfer (oriT) region of plasmid F (IncFI), ColIb-P9 (IncI1), and RP4/RP1 (IncPalpha) were constructed to test the ability of the cognate conjugation system to mediate gene transfer from Escherichia coli to Streptomyces. The conjugative system of the IncPalpha plasmids was shown to be most effective in conjugative transfer, giving peak values of (2.7 +/- 0.2) x 10(-2) S. lividans TK24 exconjugants per recipient cell. To assess whether the mating-pair formation system or the DNA-processing apparatus of the IncPalpha plasmids is crucial in conjugative transfer, an assay with an IncQ-based mobilizable plasmid (RSF1010) specifying its own DNA-processing system was developed. Only the IncPalpha plasmid mobilized the construct to S. lividans indicating that the mating-pair formation system is primarly responsible for the promiscuous transfer of the plasmids between E. coli and Streptomyces. Dynamic of conjugative transfer from E. coli to S. lividans was investigated and exconjugants starting from the first hour of mating were obtained.  相似文献   

12.
Bacterial conjugation normally involves the unidirectional transfer of DNA from donor to recipient. Occasionally, conjugation results in the transfer of DNA from recipient to donor, a phenomenon known as retrotransfer. Two distinct models have been generally considered for the mechanism of retrotransfer. In the two-way conduction model, no transfer of the conjugative plasmid is required. The establishment of a single conjugation bridge between donor and recipient is sufficient for the transfer of DNA in both directions. In the one-way conduction model, transfer of the conjugative plasmid to the recipient is required to allow the synthesis of a new conjugation bridge for the transfer of DNA from recipient to donor. We have tested these models by the construction of a mutant of the self-transmissible, IncP plasmid RK2lac that allows the establishement of the conjugation bridge but is incapable of self-transfer. Four nucleotides of the nic region of the origin of transfer (oriT) were changed directly in the 67-kb plasmid RK2lac by a simple adaptation of the vector-mediated excision (VEX) strategy for precision mutagenesis of large plasmids (E. K.Ayres, V. J. Thomson, G. Merino, D. Balderes, and D. H. Figurski, J. Mol. Biol. 230:174-185, 1993). The resulting RK2lac oriT1 mutant plasmid mobilizes IncQ or IncP oriT+ plasmids efficiently but transfers itself at a frequency which is 10(4)-fold less than that of the wild type. Whereas the wild-type RK2lac oriT+ plasmid promotes the retrotransfer of an IncQ plasmid from Escherichia coli or Pseudomonas aeruginosa recipients, the RK2lac oriT1 mutant is severely defective in retrotransfer. Therefore, retrotransfer requires prior transfer of the conjugative plasmid to the recipient. The results prove that retrotransfer occurs by two sequential DNA transfer events.  相似文献   

13.
Restriction mapping was employed to characterize the 104-kilobase (kb) cointegrate lactose plasmids from 15 independent transconjugants derived from Streptococcus lactis ML3 as well as the 55-kb lactose plasmid ( pSK08 ) and a previously uncharacterized 48.4-kb plasmid ( pRS01 ) from S. lactis ML3. The data revealed that the 104-kb plasmids were cointegrates of pSK08 and pRS01 and were structurally distinct. The replicon fusion event occurred within adjacent 13.8- or 7.3-kb PvuII fragments of pSK08 and interrupted apparently random regions of pRS01 . Correlation of the transconjugants' clumping and conjugal transfer capabilities with the interrupted region of pRS01 identified pRS01 regions coding for these properties. In the 104-kb plasmids, the pRS01 region was present in both orientations with respect to the pSK08 region. The replicon fusion occurred in recombination-deficient (Rec-) strains and appeared to introduce a 0.8 to 1.0-kb segment of DNA within the junction fragments. The degeneration of the cointegrate plasmids was monitored by examining the lactose plasmids from nonclumping derivatives of clumping transconjugants. These plasmids displayed either precise or imprecise excision of pRS01 sequences or had dramatically reduced copy numbers. Both alterations occurred by rec-independent mechanisms. Alterations of a transconjugant 's clumping phenotype also occurred by rec-independent inversion of a 4.3-kb KpnI-PvuII fragment within the pRS01 sequences of the cointegrate plasmid.  相似文献   

14.
The Staphylococcus aureus plasmid pC221, a 4.6-kilobase multicopy chloramphenicol resistance plasmid that forms plasmid-protein relaxation complexes, was mobilized for transfer by the conjugative plasmid pGO1. Two open reading frames on the pC221 genome, now designated mobA and mobB, as well as a cis-acting locus, the putative oriT, were shown to be in involved in pC221 mobilization. The mobA (but not mobB) and oriT loci were required for pC221 relaxation, and relaxation was necessary but not sufficient for pC221 mobilization by pGO1. oriT was cloned onto a pE194 derivative and complemented in trans for both relaxation and mobilization. Mobilization of relaxable plasmids in S. aureus appears to be analogous to mobilization by donation observed in gram-negative bacteria.  相似文献   

15.
Replicons that contain Tn4399, a conjugal mobilizing transposon isolated from Bacteroides fragilis, can be mobilized in the presence of broad-host-range IncP plasmids RP4 and R751 in Escherichia coli to B. fragilis or E. coli recipients (C. G. Murphy and M. H. Malamy, J. Bacteriol. 175:5814-5823, 1993). To identify the initial DNA processing events involved in Tn4399-mediated mobilization in E. coli, plasmid DNA from pCGM328 (a pUC7 vector that contains the mobilization region of Tn4399) was isolated from donor cells following the release of plasmid DNA from the relaxation complex. Site- and strand-specific cleavage within the oriT region of Tn4399 was detected by denaturing gel electrophoresis and Southern hybridization analysis of this DNA in the presence or absence of IncP plasmids. Mutations in either mocA or mocB, two genes which are encoded by Tn4399 and are required for mobilization, significantly decrease the amount of specifically nicked DNA detected. These results suggest roles for the MocA and MocB gene products in specific processing of Tn4399-containing plasmid DNA prior to mobilization. By isolation of the nicked strand and primer extension of this template, we mapped the precise 5' end of the single-stranded cleavage reaction. The nucleotide position of nicTn4399 is adjacent to two sets of inverted repeats, a genetic arrangement similar to those of previously characterized oriT regions. Two site-directed mutations which remove nicTn4399 (oriT delta 1 and oriT delta 2) cannot be mobilized to recipients when they are present in trans along with functional MocA and MocB proteins and an IncP mobilizing plasmid; they are cis-dominant loss-of-function mutations.  相似文献   

16.
Previously, we showed that a 145-kb DNA region, including the entire kanamycin biosynthetic gene cluster (with two kanamycin resistance genes), was tandemly amplified up to 36-fold in an industrial strain of Streptomyces kanamyceticus. Strain improvement had included the use of increased kanamycin resistance as an initial potential indicator of higher kanamycin productivity. We were able to recapitulate the DNA amplification by cultivating S. kanamyceticus under selection for kanamycin resistance. To identify the genes required for amplification, various chromosome deletions were constructed, and the DNA amplification was shown to depend on orf1082 (zouA), present in a putative mobile genetic element. ZouA consists of 1,481 amino acids and is homologous to the products of traA-like genes of some conjugative plasmids. These genes encode relaxases that initiate DNA transfer during conjugation by single-strand nicking at oriT. As in the original high-producing strain, DNA amplification occurred between 16-nucleotide (nt) sites (RsA and RsB) containing 14 identical nucleotides. Interestingly, RsA lies just 80 bp upstream of the initiation codon of zouA and is partially contained in an inverted repeat structure similar to those found in plasmid oriT sequences, suggesting that it might function in a manner similar to that of oriT. We therefore propose that DNA amplification in S. kanamyceticus is initiated by relaxase-mediated recombination between oriT-related sequences.  相似文献   

17.
In order to establish a gene transfer system for yeast by promiscuous conjugation, we constructed plasmid pAY101 which contained an oriT sequence derived from RK2 (IncP) and the yeast TRP1 and ARS1 genes. A conjugation mixture consisted of yeast Saccharomyces cerevisiae, E. coli harboring pAY101, and E. coli carrying a helper plasmid with mob and tra. In the conjugation mixture a tryptophan-requiring yeast mutant (trp1) was converted to be prototrophic for tryptophan at a frequency of about 10(-5) to 10(-3) per recipient cell. This E. coli-yeast conjugation system required the mob, tra, oriT, TRP1 and ARS1 genes. The mob and tra genes were trans-acting elements as in an E. coli conjugation system. The mobilization was inhibited by nalidixic acid as in a typical bacterial conjugation. DNA analysis indicated that the plasmid pAY101 was transferred from E. coli to S. cerevisiae, and retained its original structure and function in yeast host cells.  相似文献   

18.
DNA involved in the mobilization of broad-host-range plasmid R1162 was localized to a region of 2.7 kilobases within coordinates 3.4 to 6.1 kilobases on the R1162 map. By examining the transfer properties of plasmids containing cloned fragments of DNA from within this region, we showed that at least four trans-active products and a cis-active site (oriT) were involved in mobilization. A cloned DNA fragment of 155 base pairs was capable of providing full oriT activity. This fragment was located within 600 base pairs of DNA containing the origin of replication of R1162, and its nucleotide sequence and that of neighboring DNA were determined. Activation of oriT required R1162-encoded, trans-acting products. Deletions which resulted in the loss of one or more of these had a variable effect on transfer efficiency and indicated the presence of both essential and nonessential Mob products. Regions encoding these products flanked oriT and in one case appeared to overlap a gene essential for plasmid replication. The implications of these findings with respect to the broad host range of R1162 are discussed.  相似文献   

19.
Multifunctional yeast high-copy-number shuttle vectors.   总被引:187,自引:0,他引:187  
  相似文献   

20.
A 6.72-kb DNA sequence between the exc gene and the oriT operon within the transfer region of IncI1 plasmid R64 was sequenced and characterized. Three novel transfer genes, trbA, trbB, and trbC, were found in this region, along with the pnd gene responsible for plasmid maintenance. The trbABC genes appear to be organized into an operon located adjacent to the oriT operon in the opposite orientation. The trbA and trbC genes were shown to be indispensable for R64 plasmid transfer, while residual transfer activity was detected in the case of R64 derivatives carrying the trbB++ deletion mutation. The T7 RNA polymerase-promoter system revealed that the trbB gene produced a 43-kDa protein and the trbC gene produced an 85-kDa protein. The nucleotide sequence of the pnd gene is nearly identical to that of plasmid R483, indicating a function in plasmid maintenance. The plasmid stability test indicated that the mini-R64 derivatives with the pnd gene are more stably maintained in Escherichia coli cells under nonselective conditions than the mini-R64 derivatives without the pnd gene. It was also shown that the R64 transfer system itself is involved in plasmid stability to a certain degree. Deletion of the pnd gene from the tra+ mini-R64 derivative did not affect transfer frequency. DNA segments between the exc and trbA genes for IncI1 plasmids R64, Colb-P9, and R144 were compared in terms of their physical and genetic organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号