首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure.  相似文献   

2.
3.
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.  相似文献   

4.
5.
The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development.  相似文献   

6.
Ascospore Formation in the Yeast Saccharomyces cerevisiae   总被引:2,自引:0,他引:2       下载免费PDF全文
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.  相似文献   

7.
The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development.  相似文献   

8.
Fungi produce spores that allow for their dispersal and survival under harsh environmental conditions. These spores can have an astonishing variety of shapes and sizes. Using the highly polar, needle-shaped spores of the ascomycete Ashbya gossypii as a model, we demonstrated that spores produced by this organism are not simple continuous structures but rather consist of three different segments that correlate with the accumulation of different materials: a rigid tip segment, a more fragile main spore-compartment and a solid tail segment. Little is currently known about the regulatory mechanisms that control the formation of the characteristic spore morphologies. We tested a variety of mutant strains for their spore phenotypes, including spore size, shape and wall defects. The mutants that we identified as displaying such phenotypes are all known for their roles in the regulation of hyphal tip growth, including the formin protein AgBni1, the homologous Rho-type GTPases AgRho1a and AgRho1b and the scaffold protein AgPxl1. Our observations suggest that these proteins form a signalling network controlling spore length by regulating the formation of actin structures.  相似文献   

9.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

10.
ABSTRACT. Bulk maceration of Early Devonian (Lochkovian) deposits from the Welsh Borderland has yielded eight specimens of a new type of sporangium characterized by its elongate shape and distinctive spores. The specimens have been examined using scanning electron, transmission electron and light microscopy. The elongate sporangia occur isolated and are fragmented to varying degrees. They contain trilete spores that possess a proximal surface with shallow murornate ornament and a distal surface that is laevigate. The spores belong to the dispersed spore genus Scylaspora , and this is the first report of such spores in situ . Ultrastructural studies demonstrate that the spore walls are bilayered with a lamellate inner layer overlain by an essentially homogeneous outer layer. There is little or no associated extra-exosporal material. To date this is the earliest reported example of lamellate wall ultrastructure in trilete spores. Models of spore wall development are suggested in the light of evidence provided by spore wall ultrastructure. Detailed comparisons of the characters preserved in the fossils (morphological, anatomical and ultrastructural), with those in other fossil and extant plants, currently shed little light on the phylogenetic relationships of these specimens, primarily due to the paucity of comparable data. It is proposed that the plant is probably of vascular status, but in the absence of evidence for vascular tissue, it must be classified as rhyniophytoid.  相似文献   

11.
Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose. This suggests that substrate selectivity could be altered by the encapsulation.  相似文献   

12.
Abstract: The spore Rhabdosporites (Triletes) langii (Eisenack) Richardson, 1960 is abundant and well preserved in Middle Devonian (Eifelian) ‘Middle Old Red Sandstone’ deposits from the Orcadian Basin, Scotland. Here it occurs as dispersed individual spores and in situ in isolated sporangia. This paper reports on a detailed light microscope (LM), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis of both dispersed and in situ spores. The dispersed spores are pseudosaccate with a thick walled inner body enclosed within an outer layer that was originally attached only over the proximal face. The inner body has lamellate/laminate ultrastructure consisting of fine lamellae that are continuous around the spore and parallel stacked. Towards the outer part of the inner body these group to form thicker laminate structures that are also continuous and parallel stacked. The outer layer has spongy ultrastructure. In situ spores preserved in the isolated sporangia are identical to the dispersed forms in terms of morphology, gross structure and wall ultrastructure. The sporangium wall is two‐layered. A thick coalified outer layer is cellular and represents the main sporangium wall. This layer is readily lost if oxidation is applied during processing. A thin inner layer is interpreted as a peritapetal membrane. This layer survives oxidation as a tightly adherent membranous covering of the spore mass. Ultrastructurally it consists of three layers, with the innermost layer composed of material similar to that comprising the outer layer of the spores. Based on the new LM, SEM and TEM information, consideration is given to spore wall formation. The inner body of the spores is interpreted as developing by centripetal accumulation of lamellae at the plasma membrane. The outer layer is interpreted as forming by accretion of sporopollenin units derived from a tapetum. The inner layer of the sporangium wall is considered to represent a peritapetal membrane formed from the remnants of this tapetum. The spore R. langii derives from aneurophytalean progymnosperms. In light of the new evidence on spore/sporangium characters, and hypotheses of spore wall development based on interpretation of these, the evolutionary relationships of the progymnosperms are considered in terms of their origins and relationship to the seed plants. It is concluded that there is a smooth evolutionary transition between Apiculiretusispora‐type spores of certain basal euphyllophytes, Rhabdosporites‐type spores of aneurophytalean progymnosperms and Geminospora‐/Contagisporites‐type spores of heterosporous archaeopteridalean progymnosperms. Prepollen of basal seed plants (hydrasperman, medullosan and callistophytalean pteridosperms) are easily derived from the spores of either homosporous or heterosporous progymnosperms. The proposed evolutionary transition was sequential with increasing complexity of the spore/pollen wall probably reflecting increasing sophistication of reproductive strategy. The pollen wall of crown group seed plants appears to incorporate a completely new developmental mechanism: tectum and infratectum initiation within a glycocalyx‐like Microspore Surface Coat. It is unclear when this feature evolved, but it appears likely that it was not present in the most basal stem group seed plants.  相似文献   

13.
Bacterial spores are protected from the environment by a proteinaceous coat and a layer of specialized peptidoglycan called the cortex. In Bacillus subtilis, the attachment of the coat to the spore surface and the synthesis of the cortex both depend on the spore protein SpoIVA. To identify functionally important amino acids of SpoIVA, we generated and characterized strains bearing random point mutations of spoIVA that result in defects in coat and cortex formation. One mutant resembles the null mutant, as sporulating cells of this strain lack the cortex and the coat forms a swirl in the surrounding cytoplasm instead of a shell around the spore. We identified a second class of six mutants with a partial defect in spore assembly. In sporulating cells of these strains, we frequently observed swirls of mislocalized coat in addition to a coat surrounding the spore, in the same cell. Using immunofluorescence microscopy, we found that in two of these mutants, SpoIVA fails to localize to the spore, whereas in the remaining strains, localization is largely normal. These mutations identify amino acids involved in targeting of SpoIVA to the spore and in attachment of the coat. We also isolated a large set of mutants producing spores that are unable to maintain the dehydrated state. Analysis of one mutant in this class suggests that spores of this strain accumulate reduced levels of peptidoglycan with an altered structure.  相似文献   

14.
The attachment of spores to a substratum is essential for their germination and, therefore, to the completion of the life cycle of the red algae. In most red algae, spores are liberated without a cell wall, within a sheath of mucilage which is responsible for their primary attachment. Utilizing fluorescent-labeled lectins, we identified carbohydrate residues and their locations in the mucilage and cell walls of spores of Gelidium floridanum. Cell wall formation and mucilage composition were studied with calcofluor, toluidine blue (AT-O), alcian blue (AB) and periodic acid-Schiff (PAS). In the mucilage we identified α-D mannose, α-D glucose, β-D-galactose, N-acetyl-glucosamine and N-acetyl-galactosamine. The first two sugar residues were not found in the cell wall of the germ tube but they were present on the rhizoid’s cell wall indicating their importance to substrate adhesion. A cell wall is produced soon after the spore’s attachment, beginning with a polar deposition of cellulose and its gradual spread around the spore as indicated by calcofluor. The cell wall matrix was positive to AB and metachromatic to AT-O, indicating acidic polysaccharides, while cellulose microfibrills were positive to PAS. A polar disorganization of the cell wall triggers the process of germination. As spores are the natural form of propagation of Gelidium, the understanding of the mechanisms of spore attachment may contribute to the cultivation of this valuable seaweed.  相似文献   

15.
Two hundred homes with a history of water incursion were sampled for fungi to determine the prevalence and airborne spore levels of Stachybotrys spp. Sampling methods included room air, surface, and wall cavity air sampling. Stachybotrys spp. were detected with at least one of the methods in 58.5% of the houses tested, but only 9.6% of the room air samples contained Stachybotrys spores. Aerosolization of Stachybotrys spores was correlated with both wall cavity and surface contamination. However, after adjustment for the surface effect, Stachybotrys spores detected in wall cavities were not a significant factor contributing to spores detected in room air samples. We conclude that Stachybotrys spp. are commonly found on water-damaged building materials. In addition, the observations made in this study suggest that the impact on the living space air is low if the fungal spores are contained within a wall cavity.  相似文献   

16.
The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses.  相似文献   

17.
Cai S  Lu X  Qiu H  Li M  Feng Z 《Parasitology》2011,138(9):1102-1109
Life-cycle stages of the microsporidia Nosema bombycis, the pathogen causing silkworm pebrine, were separated and purified by an improved method of Percoll-gradient centrifugation. Soluble protein fractions of late sporoblasts (spore precursor cells) and mature spores were analysed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Protein spots were recovered from gels and analysed by mass spectrometry. The most abundant differential protein spot was identified by database search to be a hypothetical spore wall protein. Using immunoelectron microscopy, we demonstrated that HSWP5 is localized to the exospore of mature spores and renamed it as spore wall protein 5 (NbSWP5). Further spore phagocytosis assays indicated that NbSWP5 can protect spores from phagocytic uptake by cultured insect cells. This spore wall protein may function both for structural integrity and in modulating host cell invasion.  相似文献   

18.
Streptomycetes have a complex morphogenetic programme culminating in the formation of aerial hyphae that develop into chains of spores. After spore dispersal, environmental signals trigger dormant spores to germinate to establish a new colony. We here compared whole genome expression of a wild-type colony of Streptomyces coelicolor forming aerial hyphae and spores with that of the chp null mutant that forms few aerial structures. This revealed that expression of 244 genes was significantly altered, among which genes known to be involved in development. One of the genes that was no longer expressed in the Δ chpABCDEFGH mutant was nepA , which was previously shown to be expressed in a compartment connecting the substrate mycelium with the sporulating parts of the aerial mycelium. We here show that expression is also detected in developing spore chains, where NepA is secreted to end up as a highly insoluble protein in the cell wall. Germination of spores of a nepA deletion mutant was faster and more synchronous, resulting in colonies with an accelerated morphogenetic programme. Crucially, spores of the Δ nepA mutant also germinated in water, unlike those of the wild-type strain. Taken together, NepA is the first bacterial structural cell wall protein that is important for maintenance of spore dormancy under unfavourable environmental conditions.  相似文献   

19.
The four class A penicillin-binding proteins (PBPs) of Bacillus subtilis appear to play functionally redundant roles in polymerizing the peptidoglycan (PG) strands of the vegetative-cell and spore walls. The ywhE product was shown to bind penicillin, so the gene and gene product were renamed pbpG and PBP2d, respectively. Construction of mutant strains lacking multiple class A PBPs revealed that, while PBP2d plays no obvious role in vegetative-wall synthesis, it does play a role in spore PG synthesis. A pbpG null mutant produced spore PG structurally similar to that of the wild type; however, electron microscopy revealed that in a significant number of these spores the PG did not completely surround the spore core. In a pbpF pbpG double mutant this spore PG defect was apparent in every spore produced, indicating that these two gene products play partially redundant roles. A normal amount of spore PG was produced in the double mutant, but it was frequently produced in large masses on either side of the forespore. The double-mutant spore PG had structural alterations indicative of improper cortex PG synthesis, including twofold decreases in production of muramic delta-lactam and L-alanine side chains and a slight increase in cross-linking. Sporulation gene expression in the pbpF pbpG double mutant was normal, but the double-mutant spores failed to reach dormancy and subsequently degraded their spore PG. We suggest that these two forespore-synthesized PBPs are required for synthesis of the spore germ cell wall, the first layer of spore PG synthesized on the surface of the inner forespore membrane, and that in the absence of the germ cell wall the cells lack a template needed for proper synthesis of the spore cortex, the outer layers of spore PG, by proteins on the outer forespore membrane.  相似文献   

20.
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially because anthrax is an emerging bioterrorism agent. The exact mechanisms leading to a severe clinical form through the inhalational route are still unclear, particularly how immobile spores are captured in the alveoli and transported to the lymph nodes in the early steps of infection. We investigated the roles of alveolar macrophages and lung dendritic cells (LDC) in spore migration. We demonstrate that alveolar macrophages are the first cells to phagocytose alveolar spores, and do so within 10 min. However, interstitial LDCs capture spores present in the alveoli within 30 min without crossing the epithelial barrier suggesting a specific mechanism for rapid alveolus sampling by transepithelial extension. We show that interstitial LDCs constitute the cell population that transports spores into the thoracic lymph nodes from within 30 min to 72 h after intranasal infection. Our results demonstrate that LDCs are central to spore transport immediately after infection. The rapid kinetics of pathogen transport may contribute to the clinical features of inhalational anthrax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号