首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The sequences of three promoters recognized by the bacteriophage T7 RNA polymerase in the class II region of T7 DNA are reported. They are located at 27.9, 33.3 and 34.7 T7 units. The sequences of these promoters are compared with those of other previously characterized late T7 promoters.  相似文献   

4.
The nucleotide sequence running from the genetic left end of bacteriophage T7 DNA to within the coding sequence of gene 4 is given, except for the internal coding sequence for the gene 1 protein, which has been determined elsewhere. The sequence presented contains nucleotides 1 to 3342 and 5654 to 12,100 of the approximately 40,000 base-pairs of T7 DNA. This sequence includes: the three strong early promoters and the termination site for Escherichia coli RNA polymerase: eight promoter sites for T7 RNA polymerase; six RNAase III cleavage sites; the primary origin of replication of T7 DNA; the complete coding sequences for 13 previously known T7 proteins, including the anti-restriction protein, protein kinase, DNA ligase, the gene 2 inhibitor of E. coli RNA polymerase, single-strand DNA binding protein, the gene 3 endonuclease, and lysozyme (which is actually an N-acetylmuramyl-l-alanine amidase); the complete coding sequences for eight potential new T7-coded proteins; and two apparently independent initiation sites that produce overlapping polypeptide chains of gene 4 primase. More than 86% of the first 12,100 base-pairs of T7 DNA appear to be devoted to specifying amino acid sequences for T7 proteins, and the arrangement of coding sequences and other genetic elements is very efficient. There is little overlap between coding sequences for different proteins, but junctions between adjacent coding sequences are typically close, the termination codon for one protein often overlapping the initiation codon for the next. For almost half of the potential T7 proteins, the sequence in the messenger RNA that can interact with 16 S ribosomal RNA in initiation of protein synthesis is part of the coding sequence for the preceding protein. The longest non-coding region, about 900 base-pairs, is at the left end of the DNA. The right half of this region contains the strong early promoters for E. coli RNA polymerase and the first RNAase III cleavage site. The left end contains the terminal repetition (nucleotides 1 to 160), followed by a striking array of repeated sequences (nucleotides 175 to 340) that might have some role in packaging the DNA into phage particles, and an A · T-rich region (nucleotides 356 to 492) that contains a promoter for T7 RNA polymerase, and which might function as a replication origin.  相似文献   

5.
Tandem promoters direct E. coli ribosomal RNA synthesis.   总被引:46,自引:0,他引:46  
R A Young  J A Steitz 《Cell》1979,17(1):225-234
  相似文献   

6.
7.
8.
9.
Bacteriophages T7 and T3 encode DNA-dependent RNA polymerases that are 82% homologous, yet exhibit a high degree of specificity for their own promoters. A region of the RNA polymerase gene (gene 1) that is responsible for this specificity has been localized using two approaches. First, the RNA polymerase genes of recombinant T7 x T3 phage that had been generated in other laboratories in studies of phage polymerase specificity were characterized by restriction enzyme mapping. This approach localized the region that determines promoter specificity to the 3' end of the polymerase gene, corresponding to the carboxyl end of the polymerase protein distal to amino acid 623. To define more closely the region of promoter specificity, a series of hybrid T7/T3 RNA polymerase genes was constructed by in vitro manipulation of the cloned genes. The specificity of the resulting hybrid RNA polymerases in vitro and in vivo indicates that an interval of the polymerase that spans amino acids 674 to 752 (the 674 to 752 interval) contains the primary determinant of promoter preference. Within this interval, the amino acid sequences of the T3 and T7 enzymes differ at only 11 out of 79 positions. It has been shown elsewhere that specific recognition of T3 and T7 promoters depends largely upon base-pairs in the region from -10 to -12. An analysis of the preference of the hybrid RNA polymerases for synthetic T7 promoter mutants indicates that the 674 to 752 interval is involved in identifying this region of the promoter, and suggests that another domain of the polymerase (which has not yet been identified) may be involved in identifying other positions where the two consensus promoter sequences differ (most notably at position -15).  相似文献   

10.
11.
12.
13.
The RNA polymerases encoded by bacteriophages T3 and T7 have similar structures, but exhibit nearly exclusive template specificities. We have determined the nucleotide sequence of the region of T3 DNA that encodes the T3 RNA polymerase (the gene 1.0 region), and have compared this sequence with the corresponding region of T7 DNA. The predicted amino acid sequence of the T3 RNA polymerase exhibits very few changes when compared to the T7 enzyme (82% of the residues are identical). Significant differences appear to cluster in three distinct regions in the amino-terminal half of the protein. Analysis of the data from both enzymes suggests features that may be important for polymerase function. In particular, a region that differs between the T3 and T7 enzymes exhibits significant homology to the bi-helical domain that is common to many sequence-specific DNA binding proteins. The region that flanks the structural gene contains a number of regulatory elements including: a promoter for the E. coli RNA polymerase, a potential processing site for RNase III and a promoter for the T3 polymerase. The promoter for the T3 RNA polymerase is located only 12 base pairs distal to the stop codon for the structural gene.  相似文献   

14.
Four T7 RNA polymerase promoters contain an identical 23 bp sequence.   总被引:18,自引:0,他引:18  
M D Rosa 《Cell》1979,16(4):815-825
  相似文献   

15.
During infection of Escherichia coli by bacteriophage T7, E. coli RNA polymerase utilizes only three promoters (A1, A2, and A3). In vitro, the A promoters predominate at very low polymerase concentration, but at higher polymerase concentration the minor B, C, D, and E promoters are used with equal efficiency. The binding constant for the initial association of polymerase with promoters and the forward rate of isomerization to an "open" complex capable of initiation have been measured for the A1, A3, C, and D promoters using the abortive initiation reaction. At 80 mM KCl, 37 degrees C, both major and minor promoters isomerize rapidly (t1/2 = 10 to 30 s). In contrast, initial binding to the minor promoters (KI = 10(7) ) is at least 10-fold weaker than binding to major promoters KI greater than or equal to 10(8) ), suggesting promoter selectivity in the T7 system occurs at the point of initial binding. Association kinetics of the A1 and C promoters on intact T7 were the same as measured on restriction fragments of length greater than or equal to 500 base pairs. All open complexes dissociated with half-lives longer than 1 h. Overall equilibrium binding constants estimated from kinetic measurements ranged from 10(10) to greater than or equal to 10(11) M-1 for minor and major promoters, respectively. Data on heparin attack and abortive initiation turnover rates indicate open complex polymerase conformation may be different at the A1 and A3 promoters.  相似文献   

16.
17.
18.
Transcriptional regulation of the spo0F gene of Bacillus subtilis   总被引:17,自引:14,他引:3       下载免费PDF全文
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号