首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replicase gene expression by the human coronavirus 229E involves the synthesis of two large polyproteins, pp1a and pp1ab. Experimental evidence suggests that these precursor molecules are subject to extensive proteolytic processing. In this study, we show that a chymotrypsin-like enzyme, the virus-encoded 3C-like proteinase (3CLpro), cleaves within a common region of pp1a and pp1ab (amino acids 3490 to 4068) at four sites. trans-cleavage assays revealed that polypeptides of 5, 23, 12, and 16 kDa are processed from pp1a/pp1ab by proteolysis of the peptide bonds Q3546/S3547, Q3629/S3630, Q3824/N3825, and Q3933/A3934. Relative rate constants for the 3CLpro-mediated cleavages Q2965/A2966, Q3267/S3268, Q3824/N3825, and Q3933/A3934 were derived by competition experiments using synthetic peptides and recombinant 3CLpro. The results indicate that coronavirus cleavage sites differ significantly with regard to their susceptibilities to proteolysis by 3CLpro. Finally, immunoprecipitation with specific rabbit antisera was used to detect the pp1a/pp1ab processing end products in virus-infected cells, and immunofluorescence data that suggest an association of these polypeptides with intracellular membranes were obtained.  相似文献   

2.
Human coronavirus 229E gene expression involves proteolytic processing of the gene 1-encoded polyproteins pp1a and pp1ab. In this study, we have detected a 71-kDa polypeptide in virus-infected cells that is released from pp1ab by the virus-encoded 3C-like proteinase and that has been predicted to contain both metal-binding and helicase domains. The polypeptide encompasses amino acids Ala-4996 to Gln-5592 of pp1ab and exhibits nucleic acid-stimulated ATPase activity when expressed as a fusion protein with the Escherichia coli maltose-binding protein. These data provide the first identification of a coronavirus open reading frame 1b-encoded enzymatic activity.  相似文献   

3.
Ershov  P. V.  Yablokov  E. O.  Mezentsev  Y. V.  Chuev  G. N.  Fedotova  M. V.  Kruchinin  S. E.  Ivanov  A. S. 《Biophysics》2022,67(6):902-912
Biophysics - The papain-like protease PLpro of the SARS-CoV-2 coronavirus is a multifunctional enzyme that catalyzes the proteolytic processing of two viral polyproteins, pp1a and pp1ab. PLpro also...  相似文献   

4.
The presence of a papainlike cysteine protease (PCP) domain in the N-terminal region of the equine arteritis virus (EAV) replicase, which had been postulated on the basis of limited sequence similarities with cellular and viral thiol proteases, was confirmed by in vitro translation and mutagenesis studies. The EAV protease was found to direct an autoproteolytic cleavage at its C terminus which leads to the production of an approximately 30-kDa N-terminal replicase product (nsp1) containing the PCP domain. Amino acid residues Cys-164 and His-230 of the EAV replicase polyprotein were identified as the most likely candidates for the role of PCP catalytic residues. By means of N-terminal sequence analysis of a PCP cleavage product, derived from a bacterial expression system, it was shown that cleavage occurs between Gly-260 and Gly-261. No evidence for PCP-directed cleavages at other positions in the EAV replicase was obtained. In cotranslational and posttranslational trans-cleavage assays, neither EAV nsp1 nor its precursor was able to process the PCP cleavage site in trans.  相似文献   

5.
The cellular form of the prion protein (PrPC) is found in both full-length and several different cleaved forms in vivo. Although the precise functions of the PrPC proteolytic products are not known, cleavage between the unstructured N-terminal domain and the structured C-terminal domain at Lys-109↓His-110 (mouse sequence), termed α-cleavage, has been shown to produce the anti-apoptotic N1 and the scrapie-resistant C1 peptide fragments. β-Cleavage, residing adjacent to the octarepeat domain and N-terminal to the α-cleavage site, is thought to arise from the action of reactive oxygen species produced from redox cycling of coordinated copper. We sought to elucidate the role of key members of the ADAM (a disintegrin and metalloproteinase) enzyme family, as well as Cu2+ redox cycling, in recombinant mouse PrP (MoPrP) cleavage through LC/MS analysis. Our findings show that although Cu2+ redox-generated reactive oxygen species do produce fragmentation corresponding to β-cleavage, ADAM8 also cleaves MoPrP in the octarepeat domain in a Cu2+- and Zn2+-dependent manner. Additional cleavage by ADAM8 was observed at the previously proposed location of α-cleavage, Lys-109↓His-110 (MoPrP sequencing); however, upon addition of Cu2+, the location of α-cleavage shifted by several amino acids toward the C terminus. ADAM10 and ADAM17 have also been implicated in α-cleavage at Lys-109↓His-110; however, we observed that they instead cleaved MoPrP at a novel location, Ala-119↓Val-120, with additional cleavage by ADAM10 at Gly-227↓Arg-228 near the C terminus. Together, our results show that MoPrP cleavage is far more complex than previously thought and suggest a mechanism by which PrPC fragmentation responds to Cu2+ and Zn2+.  相似文献   

6.
Mao Y  Zhang Z  Gast C  Wong B 《Eukaryotic cell》2008,7(11):1906-1915
Fungal glycosylphosphatidylinositol (GPI)-anchored proteins localize to the plasma membrane (PM), cell wall (CW), or both. To study signals that regulate PM versus CW targeting in Candida albicans, we (i) fused the N and/or C termini of the GPI CW protein Hwp1p and the GPI PM protein Ecm331p to green fluorescent protein (GFP) and (ii) expressed and localized the resulting fusions. Forty-seven amino acids from the C terminus of Hwp1p were sufficient to target GFP to the CW, and 66 amino acids from the C terminus of Ecm331p were sufficient to target GFP to the PM. Truncation and mutagenesis studies showed that G390 was the ω cleavage site in Ecm331p. Domain exchange and mutagenesis studies showed that (i) the 5 amino acids immediately N-terminal to the ω sites (the ω − 5 to ω − 1 amino acids) played key roles in targeting to the PM or CW; (ii) KK and FE residues at positions ω − 1 and ω − 2, respectively, targeted to the PM and CW; and (iii) a loss of I at position ω − 5 increased PM retention. Small fluorescent reporters can be used to study the peptide signals that regulate PM versus CW targeting of GPI proteins and may be useful for identifying proteins that interact with key targeting signals.  相似文献   

7.
SARS冠状病毒基因组中非结构基因nsp3编码的木瓜样蛋白酶 (PLpro) 在病毒基因组复制及逃避宿主天然免疫中发挥重要作用,是研发抗病毒药物的重要靶标.SARS冠状病毒PLpro是一种病毒编码的去泛素化酶 (DUB).为深入研究SARS冠状病毒 PLpro对泛素样分子 (ubiquitin-like protein,UBL) 的DUB特性,本研究构建缺失 PLpro N末端泛素样结构域 (Ubl) 和下游跨膜结构域 (TM) 的PLpro构建体(constructs),并构建3种缺失蛋白酶催化活性的突变体,检测PLpro对泛素样分子干扰素刺激基因15 (ISG15)及SUMO-1的作用.实验结果表明,PLpro和PLpro-TM 在细胞内具有很强的去ISG(DeISGylation) 活性;缺失PLpro N末端泛素样结构域(Ubl) 对PLpro 的去ISG15 活性没有影响;对PLpro蛋白酶活性位点C1651 和 H1812 突变后,PLpro-TM的去ISG15活性消失,而对D1826位点突变后不影响此活性.PLpro 不具有去SUMO (DeSUMOylation)活性,而PLpro-TM具有一定的去SUMO活性;PLpro催化活性相关的3个关键氨基酸残基 Cys-His-Asp突变后对去SUMO活性有一定的影响.研究结果提示,SARS PLpro除了具有DUB的活性,还具有体内去ISG活性和去SUMO活性;PLpro蛋白酶活性与其去ISG活性之间有一定相关性;PLpro去SUMO-1 活性具有TM 依赖性.SARS冠状病毒PLpro 对泛素样分子作用特性的研究为阐明病毒逃避宿主天然免疫机制和开发新型抗病毒药物提供重要的理论依据.  相似文献   

8.
9.
Expression of the exceptionally large RNA genomes of CoVs involves multiple regulatory mechanisms, including extensive proteolytic processing of the large replicase polyproteins, pp1a and pp1ab, by two types of cysteine proteases: the chymotrypsin-like main protease and papain-like accessory proteases (PLpros). Here, we characterized the proteolytic processing of the human coronavirus 229E (HCoV-229E) amino-proximal pp1a/pp1ab region by two paralogous PLpro activities. Reverse-genetics data revealed that replacement of the PL2pro active-site cysteine was lethal. By contrast, the PL1pro activity proved to be dispensable for HCoV-229E virus replication, although reversion of the PL1pro active-site substitution to the wild-type sequence after several passages in cell culture indicated that there was selection pressure to restore the PL1pro activity. Further experiments showed that both PL1pro and PL2pro were able to cleave the nsp1-nsp2 cleavage site, with PL2pro cleaving the site less efficiently. The PL1pro-negative mutant genotype could be stably maintained in cell culture when the nsp1-nsp2 site was replaced by a short autoproteolytic sequence, suggesting that the major driving force for the observed reversion of the PL1pro mutation was the requirement for efficient nsp1-nsp2 cleavage. The data suggest that the two HCoV-229E PLpro paralogs have overlapping substrate specificities but different functions in viral replication. Within the tightly controlled interplay of the two protease activities, PL2pro plays a universal and essential proteolytic role that appears to be assisted by the PL1pro paralog at specific sites. Functional and evolutionary implications of the differential amino-terminal polyprotein-processing pathways among the main CoV lineages are discussed.  相似文献   

10.
The major human copper uptake protein, hCTR1, has 190 amino acids and a predicted mass of 21 kDa. hCTR1 antibodies recognize multiple bands in SDS-PAGE centered at 35 kDa. Part of this increased mass is due to N-linked glycosylation at Asn-15. We show that in mammalian cells the N15Q mutant protein trafficked to the plasma membrane and mediated copper uptake at 75% of the rate of wild-type hCTR1. We demonstrate that the extracellular amino terminus of hCTR1 also contains O-linked polysaccharides. Glycosidase treatment that removed O-linked sugars reduced the apparent mass of hCTR1 or N15Q mutant protein by 1-2 kDa. Expression of amino-terminal truncations and alanine substitution mutants of hCTR1 in HEK293 and MDCK cells localized the site of O-linked glycosylation to Thr-27. Expression of alanine substitutions at Thr-27 resulted in proteolytic cleavage of hCTR1 on the carboxyl side of the T27A mutations. This cleavage produced a 17-kDa polypeptide missing approximately the first 30 amino acids of hCTR1. Expression of wild-type hCTR1 in mutant Chinese hamster ovary cells that were unable to initiate O-glycosylation also resulted in hCTR1 cleavage to produce the 17-kDa polypeptide. The 17-kDa hCTR1 polypeptide was located in the plasma membrane and mediated copper uptake at about 50% that of the rate of wild-type hCTR1. Thus, O-linked glycosylation at Thr-27 is necessary to prevent proteolytic cleavage that removes half of the extracellular amino terminus of hCTR1 and significantly impairs transport activity of the remaining polypeptide.  相似文献   

11.
Peptide hormones are generally synthesized as inactive higher mol. wt precursors. Processing of the prohormone into biologically active peptides by specific proteolytic cleavages occurs most often at pairs of basic amino acids but also at single arginine residues. To study the role of protein secondary structure in this process, we used site-directed mutagenesis to modify the predicted secondary structure around the cleavage sites of human prosomatostatin and monitored the processing of the precursor after introduction of the mutated cDNAs in Neuro2A cells. Amino acid substitutions were introduced that affected the possibility of forming beta-turn structures in the immediate vicinity of the somatostatin-28 (S-28) and somatostatin-14 (S-14) cleavage sites. Infection of Neuro2A cells with a retrovirus carrying a human somatostatin cDNA resulted in the expression of prosomatostatin and its processing into S-28 and S-14, indicating that these cells have the necessary enzymes to process prohormone at both single and paired amino acid residues. Disruption of the different beta-turns had various effects on prosomatostatin processing: substitution of Ala for Pro-5 drastically decreased prosomatostatin processing and replacement of Pro-9 by Ala led to the accumulation of the intermediate maturation product [Arg-2Lys-1]-S-14. In contrast, substitution of Ala for Asn-12, Gly+2 and Cys+3 respectively had only very little effect on the proteolytic processing of prosomatostatin. Our results show that amino acids other than the basic amino acid residues are required to define the cleavage sites for prohormone proteolytic processing and suggest that higher orders of protein structure are involved in substrate recognition by the endoproteases.  相似文献   

12.
SARS冠状病毒基因组编码2种病毒蛋白酶,即木瓜样蛋白酶(PLpro)和3C样蛋白酶(3CLpro).其中,PLpro蛋白酶结构与功能研究是近年来冠状病毒分子生物学研究的热点之一. PLpro蛋白酶参与SARS冠状病毒1a(1ab)复制酶多聚蛋白N端部分的切割加工,是SARS冠状病毒复制酶复合体(RC)形成的重要调节蛋白分子;最新研究表明,SARS冠状病毒PLpro蛋白酶是一种病毒编码的去泛素化酶(DUB),对细胞蛋白具有明显去泛素化作用;而且对泛素(Ub)和泛素样分子ISG15均具有活性. PLpro蛋白酶对宿主抗病毒天然免疫反应具有负调节作用,是SARS冠状病毒的一种重要干扰素拮抗分子.PLpro蛋白酶是一种多功能病毒蛋白酶.本文结合作者课题组研究工作,对SARS冠状病毒PLpro蛋白酶结构和功能研究最新进展进行综述.  相似文献   

13.
Nucleotide Sequence of the Akv env Gene   总被引:63,自引:47,他引:16       下载免费PDF全文
The sequence of 2,191 nucleotides encoding the env gene of murine retrovirus Akv was determined by using a molecular clone of the Akv provirus. Deduction of the encoded amino acid sequence showed that a single open reading frame encodes a 638-amino acid precursor to gp70 and p15E. In addition, there is a typical leader sequence preceding the amino terminus of gp70. The locations of potential glycosylation sites and other structural features indicate that the entire gp70 molecule and most of p15E are located on the outer side of the membrane. Internal cleavage of the env precursor to generate gp70 and p15E occurs immediately adjacent to several basic amino acids at the carboxyl terminus of gp70. This cleavage generates a region of 42 uncharged, relatively hydrophobic amino acids at the amino terminus of p15E, which is located in a position analogous to the hydrophobic membrane fusion sequence of influenza virus hemagglutinin. The mature polypeptides are predicted to associate with the membrane via a region of 30 uncharged, mostly hydrophobic amino acids located near the carboxyl terminus of p15E. Distal to this membrane association region is a sequence of 35 amino acids at the carboxyl terminus of the env precursor, which is predicted to be located on the inner side of the membrane. By analogy to Moloney murine leukemia virus, a proteolytic cleavage in this region removes the terminal 19 amino acids, thus generating the carboxyl terminus of p15E. This leaves 15 amino acids at the carboxyl terminus of p15E on the inner side of the membrane in a position to interact with virion cores during budding. The precise location and order of the large RNase T(1)-resistant oligonucleotides in the env region were determined and compared with those from several leukemogenic viruses of AKR origin. This permitted a determination of how the differences in the leukemogenic viruses affect the primary structure of the env gene products.  相似文献   

14.
A transient protein expression system in COS-1 cells was used to study the role of hepatitis C virus (HCV)-encoded NS4A protein on HCV nonstructural polyprotein processing. By analyzing the protein expression and processing of a deletion mutant polypeptide, NS delta 4A, which encodes the entire putative HCV nonstructural polyprotein except the region encoding NS4A, the versatile functions of NS4A were revealed. Most of the NS3 processed from NS delta 4A was localized in the cytosol fraction and was degraded promptly. Coproduction of NS4A stabilizes NS3 and assists in its localization in the membrane. NS4A was found to be indispensable for cleavage at the 4B/5A site but not essential for cleavage at the 5A/5B site in NS delta 4A. The functioning of NS4A as a cofactor for cleavage at the 4B/5A site was also observed when 30 amino acids around this site was used as a substrate and a serine proteinase domain of 167 amino acids, from Gly-1049 to Ser-1215, was used as an enzyme protein, suggesting that possible domains for the interaction of NS4A were in those regions of the enzyme protein (NS3) and/or the substrate protein. Two proteins, p58 and p56, were produced from NS5A. For the production of p58, equal or excess molar amounts of NS4A relative to NS delta 4A were required. Deletion analysis of NS4A revealed a minimum functional domain of NS4A of 10 amino acids, from Gly-1678 to Ile-1687.  相似文献   

15.
The presenilin 1 (PS1) and presenilin 2 (PS2) proteins are necessary for proteolytic cleavage of the amyloid precursor protein (APP) within its transmembrane domain. One of these cleavage events (termed gamma-secretase) generates the C-terminal end of the Abeta-peptide by proteolysis near residue 710 or 712 of APP(770). Another event (termed gamma-like or epsilon-secretase cleavage) cleaves near residue 721 at approximately 2-5 residues inside the cytoplasmic membrane boundary to generate a series of stable, C-terminal APP fragments. This latter cleavage is analogous to S3-cleavage of Notch. We report here that specific mutations in the N terminus, loop, or C terminus of PS1 all increase the production of Abeta(42) but cause inhibition of both epsilon-secretase cleavage of APP and S3-cleavage of Notch. These data support the hypothesis that epsilon-cleavage of APP and S3-cleavage of Notch are similar events. They also argue that, although both the gamma-site and the epsilon-site cleavage of APP are presenilin-dependent, they are likely to be independent catalytic events.  相似文献   

16.
The main protease (Mpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. SARS-CoV Mpro is composed of a catalytic N-terminal domain and an α-helical C-terminal domain linked by a long loop. Even though the N-terminal domain of SARS-CoV Mpro adopts a similar chymotrypsin-like fold as that of piconavirus 3C protease, the extra C-terminal domain is required for SARS-CoV Mpro to be enzymatically active. Here, we reported the NMR assignments of the SARS-CoV Mpro N-terminal domain alone, which are essential for its solution structure determination.  相似文献   

17.
Small deletions were introduced into DNA plasmids bearing cDNA copies of Mahoney type 1 poliovirus RNA. The procedure used was similar to that of P. Hearing and T. Shenk (J. Mol. Biol. 167:809-822, 1983), with modifications designed to introduce only one lesion randomly into each DNA molecule. Methods to map small deletions in either large DNA or RNA molecules were employed. Two poliovirus mutants, VP1-101 and VP1-102, were selected from mutagenized populations on the basis of their host range phenotype, showing a large reduction in the relative numbers of plaques on CV1 and HeLa cells compared with wild-type virus. The deletions borne by the mutant genomes were mapped to the region encoding the amino terminus of VP1. That these lesions were responsible for the mutant phenotypes was substantiated by reintroduction of the sequenced lesions into a wild-type poliovirus cDNA by deoxyoligonucleotide-directed mutagenesis. The deletion of nucleotides encoding amino acids 8 and 9 of VP1 was responsible for the VP1-101 phenotype; the VP1-102 defect was caused by the deletion of the sequences encoding the first four amino acids of VP1. The peptide sequence at the VP1-VP3 proteolytic cleavage site was altered from glutamine-glycine to glutamine-methionine in VP1-102; this apparently did not alter the proteolytic cleavage pattern. The biochemical defects resulting from these mutations are discussed in the accompanying report.  相似文献   

18.
The structural requirements for proteolytic cleavage of the human immunodeficiency virus type 1 env gene product, gp160, to gp120 and gp41 have been assessed by specific mutagenesis of the sequence Lys Ala Lys Arg Arg Val Val Glu Arg Glu Lys Arg located between amino acids 500 and 511, i.e., at the putative C terminus of gp120. The basic amino acids underlined have been mutated, individually and in combination, to neutral amino acids, and the cleavability of the mutated env gene products was examined after expression in CV-1 cells. The results show that the replacement of Arg-511 (cleavage presumably occurs C terminal to this amino acid) with Ser completely abolishes recognition and cleavage by the cellular protease(s), i.e., the remaining basic amino acids in the vicinity do not serve as alternative substrates. However, Arg-508 and Lys-510 are important features of the recognition site since, when they are individually changed to neutral amino acids, cleavage is severely impaired. The basic amino acids 500, 502, and 504 are, individually, not important for cleavage, since their individual replacement by neutral amino acids does not impair cleavage. However, when all four basic amino acids 500, 502, 503, and 504 are changed to neutral amino acids, cleavage is almost completely abolished. This shows that the sequence Arg Glu Lys Arg at the cleavage site is alone not sufficient for cleavage but that a contribution of other amino acids is required, whether the other amino acids provide a basic character or a certain structure in the vicinity of the cleavage site. When noncleavable or poorly cleavable mutant env genes are expressed from the infectious plasmid pNL4-3 in CD4+ human lymphoblastoid cells, noninfectious virus, incapable of spread throughout the culture, is produced.  相似文献   

19.
Arenaviruses share a common strategy for glycoprotein synthesis and processing in which a mannose-rich precursor glycoprotein, termed GP-C in lymphocytic choriomeningitis virus (LCMV), is posttranslationally processed by oligosaccharide trimming and proteolytic cleavage to yield two structural glycoproteins, GP-1 and GP-2. Mapping the orientation and proteolytic cleavage site(s) in such polyproteins has traditionally required direct protein sequencing of one or more of the cleaved products. This technique requires rigorous purification of the products for sequencing and may be complicated by amino-terminal modifications which interfere with sequence analysis. We used an alternative approach in which synthetic peptides corresponding to sequences bracketing a potential protease cleavage site were used to raise antisera which define the boundaries of the cleaved products. We found that cleavage of LCMV GP-C to yield GP-1 and GP-2 occurs within a 9-amino-acid stretch of GP-C which contains a paired basic amino acid group -Arg-Arg-, corresponding to amino acids 262 to 263 in the LCMV GP-C sequence. By comparison with the predicted amino acid sequences of a second LCMV strain, LCMV-WE, as well as with the deduced amino acid sequences of the New World arenavirus Pichinde and the Old World virus Lassa, we observed similar conservation of paired basic and flanking amino acid sequences among these viruses.  相似文献   

20.
The genome of tobacco etch virus contains a single open reading frame with the potential to encode a 346-kilodalton (kDa) polyprotein. The large polyprotein is cleaved at several positions by a tobacco etch virus genome-encoded, 49-kDa proteinase. The locations of the 49-kDa proteinase-mediated cleavage sites flanking the 71-kDa cytoplasmic pinwheel inclusion protein, 6-kDa protein, 49-kDa proteinase, and 58-kDa putative polymerase have been determined by using cell-free expression, proteolytic processing, and site-directed mutagenesis systems. Each of these sites is characterized by the conserved sequence motif Glu-Xaa-Xaa-Tyr-Xaa-Gln-Ser or Gly (in which cleavage occurs after the Gln residue). The amino acid residue (Gln) predicted to occupy the -1 position relative to the scissile bond has been substituted, by mutagenesis of cloned cDNA, at each of four cleavage sites. The altered sites were not cleaved by the 49-kDa proteinase. A series of synthetic polyproteins that contained the 49-kDa proteinase linked to adjoining proteins via defective cleavage sites were expressed, and their proteolytic activities were analyzed. As part of a polyprotein, the proteinase was found to exhibit cis (intramolecular) and trans (intermolecular) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号