首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate antigens are immune targets associated with a variety of pathogens and tumor cells. Unfortunately, most carbohydrates are intrinsically T cell-independent antigens, which diminishes their efficacy as immunogens. The conversion of carbohydrate epitopes to peptide mimotopes is one means to overcome the T cell-independent nature of carbohydrate antigens because peptides have an absolute requirement for T cells. Although such conversion has great potential for the development of veterinarian and human vaccines, there are issues related to the use of peptide-based immunogens as functional surrogates. Some of these issues are fundamental, pertaining to how mimicry comes about at the molecular level, and some are application oriented, directed at elucidating important immunological mechanisms. In this article the potential and caveats of this technology regarding its application in vaccine discovery are analyzed.  相似文献   

2.
Mycobacterium avium subsp. paratuberculosis (MAP) is an etiological agent of chronic inflammation of the intestine among ruminants and humans. Currently, there are no effective vaccines and sensitive diagnostic tests available for its control and detection. For this, it is of paramount importance to identify the MAP antigens, which may be immunologically recognized by the host immune system. To address this challenge, we performed identification of the immunogenic epitopes in the MAP outer membrane proteins (OMPs). We have previously identified 57 MAP proteins as OMPs [Rana A, Rub A, Akhter Y. 2014. Molecular BioSystems, 10:2329–2337] and have evaluated them for the epitope selection and analysis employing a computational approach. Thirty‐five MAP OMPs are reported with nine‐mer peptides showing high binding affinity to major histocompatibility complex (MHC) class I molecules and 28 MAP OMPs with 15‐mer peptides of high binding affinity for MHC class II molecules. The presence of MHC binding epitopes indicates the potential cell‐mediated immune response inducing capacity of these MAP OMPs in infected host. To further investigate the humoral response inducing properties of OMPs of MAP, we report potential B cell epitopes based on the sequences of peptide antigens and their molecular structures. We also report 10 proteins having epitopes for both B and T cells representing potential candidates which may invoke both humoral and cellular immune responses in the host. These findings will greatly accelerate and expedite the formulation of effective and cost‐efficient vaccines and diagnostic tests against MAP infection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Purpose The carcinoembryonic antigen (CEA) is extensively expressed on the vast majority of colorectal, gastric, and pancreatic carcinomas, and, therefore, is a good target for tumor immunotherapy. CD4+ T-helper (Th) cells play a critical role in initiation, regulation, and maintenance of immune responses. In this study, we sought to identify Th epitopes derived from CEA which can induce CEA-specific Th responses. The combined application with cytotoxic T lymphocyte (CTL) epitopes would be more potent than tumor vaccines that primarily activate CTL alone.Methods We utilized a combined approach of using a computer-based algorithm analysis TEPITOPE and in vitro biological analysis to identify Th epitopes in CEA.Results Initial screening of healthy donors showed that all five predicted peptides derived from CEA could induce peptide-specific T-cell proliferation in vitro. We characterized these CEA epitopes by establishing and analyzing peptide-specific T-cell clones. It was shown that CD4+ T-cells specific for the CEA116 epitope can recognize and respond to naturally processed CEA protein and CEA116 epitope can be promiscuously presented by commonly found major histocompatibility complex (MHC) alleles. Furthermore, it was demonstrated that immunization of human leukocyte antigen (HLA)-DR4 transgenic mice with CEA116 peptide elicited antigen-specific Th responses which can recognize the antigenic peptides derived from CEA protein and CEA-positive tumors.Conclusion The MHC class II-restricted epitope CEA116 could be used in the design of peptide-based tumor vaccine against several common cancers expressing CEA.  相似文献   

5.
Heparanase is expressed in almost all advanced tumors, and therefore it may serve as a potential target for tumor therapy. Our previous study has shown that heparanase can serve as a potential universal tumor-associated antigen (TAA) for the immunotherapy of advanced tumors. Further study demonstrated that the HLA-A*0201-restricted Cytotoxic T lymphocytes (CTL) epitopes Hpa525 (PAFSYSFFV), Hpa277 (KMLKSFLKA) and Hpa405 (WLSLLFKKL) from human heparanase could induce a potent anti-tumor immune response in vitro. The present study was designed to investigate whether the above peptides could induce immune responses in mice. Our results demonstrated that the effectors from heparanase peptide-immunized mice could effectively lyse various tumor cells that were heparanase positive and HLA-A*0201 matched. We also found that these peptide-specific CTLs did not lyse autologous lymphocytes that had low heparanase activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-γ-producing T cells as compared to a negative peptide. These results suggest that Hpa525, Hpa277, and Hpa405 peptides are novel HLA-A*0201-restricted CTL epitopes capable of inducing heparanase-specific CTLs in mice. Because heparanase is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide-based vaccines may be useful for the immunotherapy of patients with advanced tumors.  相似文献   

6.
New vaccines are needed to combat Mycobacterium tuberculosis (MTB) infections. The currently employed Bacillus Calmette‐Guérin vaccine is becoming ineffective, due in part to the emergence of multidrug‐resistant tuberculosis (MDR‐TB) strains and the reduced immune capacity in cases of HIV coinfection. CD8+ T cells play an important role in the protective immunity against MTB infections, and the identification of immunogenic CD8+ T cell epitopes specific for MTB is essential for the design of peptide‐based vaccines. To identify CD8+ T cell epitopes of MTB proteins, we screened a set of 94 MTB antigens for HLA class I A*11:01‐binding motifs. HLA‐A*11:01 is one of the most prevalent HLA molecules in Southeast Asians, and definition of T cell epitopes it can restrict would provide significant coverage for the Asian population. Peptides that bound with high affinity to purified HLA molecules were subsequently evaluated in functional assays to detect interferon‐γ release and CD8+ T cell proliferation in active pulmonary TB patients. We identified six novel epitopes, each derived from a unique MTB antigen, which were recognized by CD8+ T cells from active pulmonary TB patients. In addition, a significant level of epitope‐specific T cells could be detected ex vivo in peripheral blood mononuclear cells from active TB patients by an HLA‐A*11:01 dextramer carrying the peptide Rv3130c194‐204 (from the MTB triacylglycerol synthase Tgs1), which was the most frequently recognized epitope in our peptide library. In conclusion, this study identified six dominant CD8+ T cell epitopes that may be considered potential targets for subunit vaccines or diagnostic strategies against TB.  相似文献   

7.
Abstract

In our ongoing efforts to combat cancer, peptide-based tumor vaccines are promising as one of the several alternatives used for cancer immunotherapy and immunoprevention. We have attempted to identify T-cell epitopes suitable for the development of a peptide-based cancer vaccine directed towards placental isozyme of alkaline phosphatase (PLAP), an oncofetal antigen. After identifying amino acid residues specific to PLAP and distinct from other close PLAP homologs, we have used sequence-based immunoinformatics tools (BIMAS and SYF- PEITHI) and conducted molecular modeling studies using InsightII to investigate the binding affinity of the epitopes containing the unique residues with respective MHC class I molecules. Promiscuous epitopes binding to different alleles of different class I HLA loci were analyzed to get a population coverage that is widespread. Binding affinity deduced from the modeling studies corroborated the status of most of the epitopes scoring high in BIMAS and SYFPEITHI. We have thus identified specific epitopes from PLAP that have a potential for binding to their respective MHC class I alleles with high affinity. These peptides would be analysed in experiments to demonstrate their involvement in the induction of primary cytotoxic T-cell responses in vitro, using respective HLA-restricted T-cells in our way towards the development of an effective anti-cancer vaccine in a background of diverse MHC haplotypes.  相似文献   

8.
The assembly of synthetic peptide-based vaccines that incorporate multiple epitopes is a major goal of vaccine development, because such vaccines will potentially allow the immunization of outbred populations against a number of different pathogens. We have shown that free radical-induced polymerization of individual peptide epitopes results in the incorporation of multiple copies of the same or different epitopes into high molecular weight immunogens (O'Brien-Simpson, N.M., Ede, N.J., Brown, L.E., Swan, J. & Jackson, D.C. (1997) Polymerization of unprotected synthetic peptides: a view toward synthetic peptide vaccines. J. Am. Chem. Soc.119, 1183-1188; Jackson, D.C., O'Brien-Simpson, N., Ede, N.J. & Brown, L.E. (1997) Free radical induced polymerization of synthetic peptides into polymeric immunogens. Vaccine 15, 1697-1705). The ability to control the size of these polymers, to determine the physical and chemical properties of the backbone material and also to know the extent to which individual peptide epitopes are incorporated are important manufacturing considerations and form the subject of this study. We show here that the polymerization process is highly efficient with at least 70% of peptides incorporated into the resulting polymer, that acrylamide and acryloylated amino acids can be used as comonomers with peptide epitopes in the polymerization reaction and that the choice of the comonomer can influence the properties of the resulting polymer. We also show that the size of chain growth polymers is restricted in the presence of chain transfer agents, that the resulting polymer size can be predicted and that there is little or no difference in the immunogenicity of polymers that range in apparent molecular size between 18 kDa and 335 kDa. The successful polymerization of peptide epitopes with an acryloyl-amino acid creates the potential for introducing different physical and chemical properties into artificial protein immunogens.  相似文献   

9.
Vaccination is generally considered to be the most effective method of preventing infectious diseases. All vaccinations work by presenting a foreign antigen to the immune system in order to evoke an immune response. The active agent of a vaccine may be intact but inactivated (‘attenuated’) forms of the causative pathogens (bacteria or viruses), or purified components of the pathogen that have been found to be highly immunogenic. The increased understanding of antigen recognition at molecular level has resulted in the development of rationally designed peptide vaccines. The concept of peptide vaccines is based on identification and chemical synthesis of B-cell and T-cell epitopes which are immunodominant and can induce specific immune responses. The accelerating growth of bioinformatics techniques and applications along with the substantial amount of experimental data has given rise to a new field, called immunoinformatics. Immunoinformatics is a branch of bioinformatics dealing with in silico analysis and modelling of immunological data and problems. Different sequence- and structure-based immunoinformatics methods are reviewed in the paper.  相似文献   

10.
Many CTL epitopes of clinical importance, particularly those derived from tumor Ags, display relatively poor MHC binding affinity and stability. Because in vivo immunogenicity, and thus the efficacy of peptide-based vaccines, is thought to be determined by MHC/peptide complex stability, there is a need to develop a simple strategy for enhancing the binding of suboptimal epitopes. Toward this goal, the ability to enhance suboptimal peptides through covalent linkage to beta2-microglobulin (beta2m) was explored. Two suboptimal variants of a high-affinity Db-restricted influenza nucleoprotein peptide were covalently linked, via a polypeptide spacer, to the amino terminus of human beta2m and the recombinant fusion proteins expressed in Escherichia coli. When compared with their uncoupled counterparts, the beta2m-linked epitopes display enhanced MHC stabilization and antigenicity. Thus, tethering epitopes to beta2m provides a simple method for augmenting the biological activity of suboptimal peptides and could be useful in the design of peptide-based vaccines or immunotherapeutics.  相似文献   

11.
Peptide-based vaccines that directly target T cell or B cell epitopes may have significant advantages over conventional vaccines. Further, synthetic chimeric peptides that combine strong T cell epitopes with poorly immunogenic, but immunodominant, B cell epitopes or strain-conserved B cell epitopes may be useful in eliciting antibody to such important regions. Here we characterize a human T cell epitope analyzed in 54 individuals immunized with a hepatitis B virus surface Ag vaccine. Primary cultures from a total of 59 immunized donors were assessed for their ability to respond to hepatitis B virus surface Ag and peptides, and five were non-responders (8.5%). T cell lines were established from the remaining 54 responders. Of the responders, it was found that the peptide representing amino acids 19 through 33 (19-33) elicited significant proliferation in lines derived from 50 donors. This "universal" T cell epitope, which was recognized in donors of many different HLA-DR and -DQ haplotypes, was then used to construct a chimeric peptide containing 19-33 and the third V region loop structure (V3 loop) of HIV-1 envelope gp 120, in an attempt to augment the immune response to the V3 loop peptide. The V3 loop is the region to which significant neutralizing antibody is directed. Thus, a strong immune response to a synthetic peptide that contains the strain-conserved V3 loop region could have significant therapeutic implications. The V3 loop/19-33 peptide was then used to prime mice, to determine whether V3 loop-specific antibody could be induced. The peptide elicited potent 19-33-specific proliferation in T cells isolated from draining lymph nodes, and in six of six mice anti-V3 loop antibody was elicited. Further, V3 loop/19-33-primed animals made significant levels of antibody that bound rgp120. These data suggest that, when a major T cell epitope is synthesized in tandem with the V3 loop, a significant immune response against the loop can be elicited. Thus, given the finding that neutralizing antibody may play a role in the control and/or prevention of HIV infection, an HIV vaccine composed of a T cell epitope-containing peptide may prove effective. In addition, this type of approach can be generalized to the design of peptide-based vaccines.  相似文献   

12.
Synthetic immunogens, containing built-in adjuvanticity, B cell, T helper cell and CTL epitopes or mimotopes, are ideal and invaluable tools to study the immune response with respect to antigen processing and presentation. This serves as a basis for the development of complete and minimal vaccines which do not need large carrier proteins, further adjuvants, liposome formulations or other delivery systems. Combinatorial peptide libraries, either completely random or characterized by one or several defined positions, are useful tools for the identification of the critical features of B cell epitopes and of MHC class I and class II binding natural and synthetic epitopes. The complete activity pattern of an O/Xn library with hundreds of peptide collections, each made up from billions of different peptides, represents the ranking of amino acid residues mediating contact to the target proteins of the immune system. Combinatorial libraries support the design of peptides applicable in vaccination against infectious agents as well as therapeutic tumour vaccines. Using the principle of lipopeptide vaccines, strong humoral and cellular immune responses could be elicited. The lipopeptide vaccines are heat-stable, non-toxic, fully biodegradable and can be prepared on the basis of minimized epitopes by modern methods of multiple peptide synthesis. The lipopeptides activate the antigen-presenting macrophages and B cells and have been recently shown to stimulate innate immunity by specific interaction with receptors of the Toll family.  相似文献   

13.
CD8+ T cells play an important role in early HIV infection. However, HIV has the capacity to avoid specific CTL responses due to a high rate of mutation under selection pressure. Although the HIV proteins, gag and pol, are relatively conserved, these sequences generate low-affinity MHC-associated epitopes that are poorly immunogenic. Here, we applied an approach that enhanced the immunogenicity of low-affinity HLA-A2.1-binding peptides. The first position with tyrosine (P1Y) substitution enhanced the affinity of HLA-A2.1-associated peptides without altering their antigenic specificity. More importantly, P1Y variants efficiently stimulated in vivo native peptide-specific CTL that also recognized the corresponding naturally processed epitope. The potential to generate CTL against any low-affinity HLA-A2.1-associated peptide provides us with the necessary technique for identification of virus cryptic epitopes for development of peptide-based immunotherapy. Therefore, identification and modification of the cryptic epitopes of gal and pol provides promising candidates for HIV immunotherapy dependent upon efficient presentation by virus cells. Furthermore, this may be a breakthrough that overcomes the obstacle of immune escape caused by high rates of mutation. In this study, bioinformatics analysis was used to predict six low-affinity cryptic HIV gag and pol epitopes presented by HLA-A*0201. A HIV compound multi-CTL epitope gene was constructed comprising the gene encoding the modified cryptic epitope and the HIV p24 antigen, which induced a strong CD8+ T cell immune response regardless of the mutation. This approach represents a novel strategy for the development of safe and effective HIV prophylactic and therapeutic vaccines.  相似文献   

14.
The immune system is engaged in a constant antigenic surveillance through the Major Histocompatibility Complex (MHC) class I antigen presentation pathway. This is an efficient mechanism for detection of intracellular infections, especially viral ones. In this work we describe conformational patterns shared by epitopes presented by a given MHC allele and use these features to develop a docking approach that simulates the peptide loading into the MHC cleft. Our strategy, to construct in silico MHC:peptide complexes, was successfully tested by reproducing four different crystal structures of MHC-I molecules available at the Protein Data Bank (PDB). An in silico study of cross-reactivity potential was also performed between the wild-type complex HLA-A2-NS31073 and nine MHC:peptide complexes presenting alanine exchange peptides. This indicates that structural similarities among the complexes can give us important clues about cross reactivity. The approach used in this work allows the selection of epitopes with potential to induce cross-reactive immune responses, providing useful tools for studies in autoimmunity and to the development of more comprehensive vaccines.  相似文献   

15.
Chicken riboflavin carrier protein (RCP; 219 AA) harbours four linear epitopes, constituted by the peptide residues 3-23, 64-83, 130-147 and 200-219. Antibodies to these sequences bioneutralize maternal RCP and provide protection from pregnancy in rodents. In order to overcome the major histocompatibility complex-dependent variability in immune response often encountered with use of single peptides for vaccination in genetically outbred populations, we have assembled a novel synthetic gene, incorporating in tandem the nucleotide sequences coding for all the four neutralizing epitopes of chicken RCP and expressed in Escherichia coli. The gene product, mini-RCP has been characterized for its immunogenic properties and contraceptive potential in rodents. Immunization of rabbits and rats led to generation of antibodies against individual peptide components, as determined by enzyme-linked-immunosorbent assay (ELISA). However, immunized rats carried pregnancy to term and delivered healthy offsprings. Antisera from these rats exhibited decreased affinity of binding to the native protein. These findings suggest that the prospects of covalently-linked epitope peptides need to be cautiously evaluated during the design and development of peptide-based vaccines.  相似文献   

16.
The mechanisms underlying epitope selection and the potential impact of immunodominance hierarchies on peptide-based vaccines are not well understood. Recently, we have shown that two immunodominant MHC class I-restricted epitopes, NP(366-374)/D(b) (nucleoprotein (NP)) and PA(224-233)/D(b) (acidic polymerase (PA)), which drive the CD8(+) T cell response to influenza virus infection in C57BL/6 mice, are differentially expressed on infected cells. Whereas NP appears to be strongly expressed on all infected cells, PA appears to be strongly expressed on dendritic cells but only weakly expressed on nondendritic cells. Thus, the immune response to influenza virus may involve T cells specific for epitopes, such as PA, that are poorly expressed at the site of infection. To examine the consequences of differential Ag presentation on peptide vaccination, we compared the kinetics of the T cell response and influenza virus clearance in mice vaccinated with the NP or PA peptide. Vaccination with either the NP or PA peptide resulted in accelerated and enhanced Ag-specific T cell responses at the site of infection following influenza virus challenge. These T cells were fully functional in terms of their ability to produce IFN-gamma and TNF-alpha and to mediate cytolytic activity. Despite this enhancement of the Ag-specific T cell response, PA vaccination had a detrimental effect on the clearance of influenza virus compared with unvaccinated or NP-vaccinated mice. These data suggest that differential Ag presentation impacts the efficacy of T cell responses to specific epitopes and that this needs to be considered for the development of peptide-based vaccination strategies.  相似文献   

17.
Recent developments in the understanding of the structure and replications of a wide range of pathogens, including viruses, bacteria and parasites have opened up ways of designing novel vaccines which should both improve the quality and extend the range and value of vaccines as major prophylactic and therapeutic tools of the future. Two main strategies have emerged, one involving the development of synthetic vaccines which are essentially composed of selected epitopes of the pathogenic agent that will elicit neutralising antibodies. The other strategy attempts to make use of chimeric agents that will allow live virus or bacteria to be used as vectors for carrying appropriate epitopes of the target pathogen. Current knowledge about the immunology and improvements in the presentation of antigen to the immune system will also play an important role in the rational design of vaccines. This review summarises present methods of producing vaccines and considers the development of more rational methods of vaccine design that will greatly influence the production of vaccines in the future.  相似文献   

18.
19.
Immunotherapeutic approaches to cancer should focus on novel undertakings that modulate immune responses by synergistic enhancement of anti-tumor immunological parameters. Cancer vaccines should preferably be composed of multiple defined tumor antigen specific B- and T-cell epitopes. The main focus of this article is to briefly review the present status of Her-2/neu vaccine strategies and to describe the innovative strategies developed in my laboratory for a vaccine against HER-2/neu (ErbB-2) with emphasis on the humoral arm of the immune response. Elucidating the underlining mechanisms of anti-tumor effects elicited by peptide vaccines against a self-protein is a requirement for developing an immunotherapeutic strategy that might be effective in human cancer vaccines. Our approach entails the identification of biologically relevant epitopes, establishing relevant in vitro assays for monitoring vaccine efficacy, devising strategies to engineer conformationally dependent sequences, developing highly immunogenic vaccines for an outbred population and delivering the immunogen/vaccine in a safe and efficacious vehicle, utilizing transgenic animal models for assessing tumor development, and developing challenge models using transplantable tumors to study efficacy of vaccine constructs. We have developed a multi-HER-2/neu B-cell epitope approach and shown in preclinical studies that immunization with a combination of two B-cell epitope was more effective in preventing mammary tumors than a single epitope. We have translated that work to the clinic (OSU 0105) in an FDA approved, NCI sponsored “Phase 1 Active Immunotherapy trial with Chimeric and Multi-epitope based peptide vaccine targeting HER-2 oncoprotein and nor-MDP adjuvant in patients with metastatic and/or recurrent solid tumors” at the James Cancer Hospital at the Ohio State University. The correlation between overexpression of HER-2/neu and up-regulation of VEGF has been demonstrated in breast cancer patients. Thus, blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. The hypothesis that combination of anti-angiogenic therapy and tumor immunotherapy of cancer may be synergistic is an important future goal. In this review, I will discuss insights into our preclinical studies that might aid in the design of the next generation of cancer vaccines and become an integrated component of prophylactic/preventive and therapeutic approach.  相似文献   

20.
Here, we sought to determine whether peptide vaccines designed harbor both class I as well as class II restricted antigenic motifs could concurrently induce CD4 and CD8 T cell activation against autologous tumor antigens. Based on our prior genome-wide interrogation of human prostate cancer tissues to identify genes over-expressed in cancer and absent in the periphery, we targeted SIM2 as a prototype autologous tumor antigen for these studies. Using humanized transgenic mice we found that the 9aa HLA-A*0201 epitope, SIM2237–245, was effective at inducing an antigen specific response against SIM2-expressing prostate cancer cell line, PC3. Immunization with a multi-epitope peptide harboring both MHC-I and MHC-II restricted epitopes induced an IFN-γ response in CD8 T cells to the HLA-A*0201-restricted SIM2237–245 epitope, and an IL-2 response by CD4 T cells to the SIM2240–254 epitope. This peptide was also effective at inducing CD8+ T-cells that responded specifically to SIM2-expressing tumor cells. Collectively, the data presented in this study suggest that a single peptide containing multiple SIM2 epitopes can be used to induce both a CD4 and CD8 T cell response, providing a peptide-based vaccine formulation for potential use in immunotherapy of various cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号