首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some populations of the butterflies Acraea encedon and A. encedana, most females are infected with a bacterium that kills their sons. The resulting shortage of males is associated with females adopting a sex‐role‐reversed mating system, in which females swarm at landmarks such as hilltops and compete for males. We have observed the mating behaviour of Acraea species that are not known to be infected with the male‐killer. In over half of these species, males were found to aggregate on hilltops. It is likely that this behaviour was ancestral to the sex‐role‐reversed swarms of Acraea encedon and A. encedana, and we discuss how the spread of the male‐killing infection may have converted this mating system into sex‐role‐reversed swarming.  相似文献   

2.
In some populations of the African butterfly, Acraea encedon, there are two kinds of females, one producing offspring in a normal 1:1 sex ratio, the other producing females only; in other populations the sex ratio is apparently normal. All-female broods had hitherto been mainly associated with populations in which field sampling revealed an excess of females. The all-female brood trait is described from a population at Dar es Salaam which field sampling suggested was normal, and this indicates that the trait may be much more widespread and common than had previously been supposed. This discovery also extends the known distribution of the trait across Africa from Sierra Leone to eastern Tanzania. The butterfly is also a polymorphic Müllerian mimic of Danaus chrysippus, which is a highly unusual phenomenon as Müllerian mimicry is almost invariably monomorphic. The relative frequencies of two corresponding colour forms of the two species of butterflies at Dar es Salaam adds support to the hypothesis that they are indeed Mullerian mimics. The results of breeding experiments suggest that the polymorphic forms in Acraea encedon are allelic with dominance.  相似文献   

3.
Sex-role-reversed mating systems in which females compete for males and males may be choosy are usually associated with males investing more than females in offspring. We report that sex-role reversal may also be caused by selfish genetic elements which distort the sex ratio towards females. Some populations of the butterflies Acraea encedon and Acraea encedana are extremely female biased because over 90% of females are infected with a Wolbachia bacterium that is maternally inherited and kills male embryos. Many females in these populations are virgins suggesting that their reproductive success may be limited by access to males. These females form lekking swarms at landmarks in which females exhibit behaviours which we interpret as functioning to solicit matings from males. The hypothesis that female A. encedon swarm in order to mate is supported by the finding that, in release recapture experiments, mated females tend to leave the swarm while unmated females remained. This behaviour is a sex-role-reversed form of a common mating system in insects in which males form lekking swarms at landmarks and compete for females. Female lekking swarms are absent from less female-biased populations and here the butterflies are instead associated with resources in the form of the larval food plant.  相似文献   

4.
Biased sex ratios can have conservation consequences for dioecious plant species with small population sizes because of an increased risk of single sex populations. Biased sex ratios have been observed in two of the three species of Lindera (Lauraceae) in the eastern United States, but have not been documented for Lindera subcoriacea, a rare shrub of the southeastern USA. We inventoried 78 of 118 populations in North Carolina over a 3 year period, documenting the location, community type, and sex, of 299 individuals. In addition, we measured the stem height and diameter for 245 individuals. We examined population persistence relative to historical population size estimates. Average population size was 7.9 individuals and 72 % of visited populations were extant. There was a significant positive correlation between historical estimates of population size and persistence. Lindera subcoriacea consistently had male-biased (58 %) sex ratios across all population sizes and vegetation communities. Males and females had similar stem heights (mean 200.4 vs. 187.8 cm, respectively) and diameters (1.3 vs. 1.2 cm, respectively) across years and were not spatially segregated within populations. It is unclear at what stage biased sex ratios arise in L. subcoriacea, but results suggest that the causes operate across vegetation communities and population sizes. The weak bias exhibited in L. subcoriacea sex ratios has limited implications for the species’ conservation except where spatially isolated populations are unisexual. Given the vulnerability of small L. subcoriacea populations to extirpation, they should be high priority targets for management.  相似文献   

5.
Parthenogenesis-inducing (PI) Wolbachia belong to a class of intracellular symbionts that distort the offspring sex ratio of their hosts toward a female bias. In many PI Wolbachia-infected species sex ratio distortion has reached its ultimate expression-fixation of infection and all-female populations. This is only possible with thelytokous PI symbionts as they provide an alternative form of reproduction and remove the requirement for males and sexual reproduction. Many populations fixed for PI Wolbachia infection have lost the ability to reproduce sexually, even when cured of the infection. We examine one such population in the species Trichogramma pretiosum. Through a series of backcrossing experiments with an uninfected Trichogramma pretiosum population we were able to show that the genetic basis for the loss of female sexual function could be explained by a dominant nuclear effect. Male sexual function had not been completely lost, though some deterioration of male sexual function was also evident when males from the infected population (created through antibiotic curing of infected females) were mated to uninfected females. We discuss the dynamics of sex ratio selection in PI Wolbachia-infected populations and the evolution of non-fertilizing mutations.  相似文献   

6.
Many species of arthropod are infected by deleterious inherited micro-organisms. Typically these micro-organisms are inherited maternally. Consequently, some, particularly bacteria of the genus Wolbachia, employ a variety of strategies that favour female over male hosts. These strategies include feminisation, induction of parthenogenesis and male-killing. These strategies result in female biased sex ratios in host populations, which lead to selection for host factors that promote male production. In addition, the intra-genomic conflict produced by the difference in transmission of these cytoplasmic endosymbionts and nuclear factors will impose a pressure favouring nuclear factors that suppress the effects of the symbiont. During investigations of the diversity of male-killing bacteria in ladybirds (Coccinellidae), unexpected patterns of vertical transmission of a newly discovered male-killing taxon were observed in the ladybird Cheilomenes sexmaculata. Initial analysis suggested that the expression of the bacterial male-killing trait varies according to the male(s) a female has mated with. By swapping males between females, a male influence on the expression of the male-killing trait was confirmed. Experiments were then performed to determine the nature of the interaction. These studies showed that a single dominant allele, which rescues male progeny of infected females from the pathological effect of the male-killer, exists in this species. The gene shows typical Mendelian autosomal inheritance and is expressed irrespective of the parent from which it is inherited. Presence of the rescue gene in either parent does not significantly affect the inheritance of the symbiont. We conclude that C. sexmaculata is host to a male-killing γ-proteobacterium. Further, this beetle is polymorphic for a nuclear gene, the dominant allele of which rescues infected males from the pathogenic effects of the male-killing agent. These findings represent the first reported case of a nuclear suppressor of male-killing in a ladybird. They are considered in regard to sex ratio and intra-genomic conflict theories, and models of the evolutionary dynamics and distribution of inherited symbionts.  相似文献   

7.
Sex ratios are subject to distortion by a range of inherited parasites [1]. Although it has been predicted that the presence of these elements will result in spatial and temporal variation in host sex ratio [2], [3] and [4], testing of this hypothesis has been constrained by availability of historical data. We here determine spatial and temporal variation in sex ratio in a interaction between a butterfly and male-killing Wolbachia bacteria [5] by assaying infection presence in museum specimens, and from this inferring infection prevalence and phenotype in historical populations. Comparison of contemporary and museum samples revealed profound change in four of five populations examined. Two populations become extremely female biased, associated with spread of the male-killer bacterium. One evolved from extremely female biased to a sex ratio near parity, resulting from the infection losing male-killing activity. The final population fluctuated widely in sex ratio, associated with varying frequency of the male killer. We conclude that asynchronous invasion and decline of sex-ratio distorters combines with the evolution of host suppressors to produce a rapidly changing mosaic of sex ratio. As a consequence, the reproductive ecology of the host species is likely to be fundamentally altered over short time scales [6]. Further, the study demonstrates the utility of museum specimens as “silent witnesses” of evolutionary change.  相似文献   

8.
In experimentally infected insects, the sex ratio of first generation nematodes of five species of Steinernema was female-biased (male proportion 0.35-0.47). There was a similar female bias when the worms developed in vitro (0.37-0.44), indicating that the bias in these species is not due to a lower rate of infection by male infective juveniles (IJs). Experimental conditions influenced the proportion of males establishing in insects, indicating that male and female IJs differ in their behaviour. However, there was no evidence that males are the colonising sex in any species, contrary to what has previously been proposed. Time of emergence from the host in which the nematodes had developed influenced sex ratios in experimental infections. In three species (Steinernema longicaudum, Steinernema glaseri and Steinernema kraussei), early emerged nematodes had a higher proportion of males than those that emerged later, with the reverse trend for Steinernema carpocapsae and Steinernema feltiae. In a more detailed in vitro study of S. longicaudum, the proportion of males was similar whether or not the nematodes passed through the developmentally arrested IJ stage, indicating that the female bias is not due to failure of males to exit this stage. The sex ratio in vitro was independent of survival rate from juvenile to adult, and was female-biased even when all juveniles developed, indicating that the bias is not explained by failure of males to develop to adults. The female-biased sex ratio characteristic of Steinernema populations appears to be present from at least the early juvenile stage. We hypothesise that the observed female bias is the population optimal sex ratio, a response to cycles of local mate competition experienced by nematodes reproducing within insect hosts interspersed with periods of outbreeding with less closely related worms following dispersal.  相似文献   

9.
When costs of producing male versus female offspring differ, parents may vary allocation of resources between sons and daughters. We tested leading sex-allocation theories using an information-theoretic approach and Bayesian hierarchical models to analyse litter sex ratios (proportion males) at weaning for 1,049 litters over 24 years from a population of Richardson’s ground squirrels (Urocitellus richardsonii), a polygynandrous, annually reproducing mammal in which litter size averages from six to seven offspring and sons are significantly heavier than daughters at birth and weaning. The model representing random Mendelian sex-chromosome assortment fit the data best; a homeostatic model received similar support but other models performed poorly. Embryo resorption was rare, and 5 years of litter data in a second population revealed no differences in litter size or litter sex ratio between birth and weaning, suggesting that litter size and sex ratio are determined in early pregnancy. Sex ratio did not vary with litter size at weaning in any of 29 years, and the observed distribution of sex ratios did not differ significantly from the binomial distribution for any litter size. For 1,580 weaned litters in the two populations, average sex ratio deviated from parity in only 3 of 29 years. Heavier females made a greater reproductive investment than lighter females, weaning larger and heavier litters composed of smaller sons and daughters, but litter sex ratio was positively related to maternal mass in only 2 of 29 years. Such occasional significant patterns emphasize the importance of multi-season studies in distinguishing infrequent events from normal patterns.  相似文献   

10.
Male-killing bacteria are widespread in arthropods, and can profoundly alter the reproductive biology of their host species. Here we detail the first case of complete suppression of a male killer. The nymphalid butterfly Hypolimnas bolina is infected with a strain of the bacterium Wolbachia, wBol1, which kills male host embryos in Polynesian populations, but does not do so in many areas of Southeast Asia, where both males and female adults are naturally infected, and wBol1-infected females produce a 1:1 sex ratio. We demonstrate that absence of male killing by wBol1 is associated with dominant zygotic suppression of the action of the male killer. Simulations demonstrate host suppressors of male-killer action can spread very rapidly, and historical data indicating the presence of male killing in Southeast Asia in the very recent past suggests suppressor spread has been a very recent occurrence. Thus, male killer/host interactions are much more dynamic than previously recognised, with rapid and dramatic loss of the phenotype. Our results also indicate that suppression can render male killers completely quiescent, leading to the conclusion that some species that do not currently express a male killer may have done so in the past, and thus that more species have had their biology affected by these parasites than previously believed.  相似文献   

11.
Mice were intraperitoneally infected with 2 × 108 cfu Staphylococcus aureus Xen 36 and treated with 2,130 AU (arbitrary units) nisin (equivalent to 27.7 μg pure nisin), a class Ia lantibiotic, over 7 days. The metabolic activity of S. aureus Xen 36, concluded from changes in cell bioluminescence, declined for the first 3.5 h, but increased over the next 24 h and remained at this level for the remainder of the 7-day trial. Similar results were obtained with heat-inactivated (25 min at 121 °C) nisin, suggesting that the decline in metabolic activity of S. aureus Xen 36 cannot be attributed to the bacteriostatic activity of nisin. The decline in lymphocyte numbers in infected mice was of smaller magnitude after treatment with active nisin compared to inactive nisin, suggesting that active nisin limited the apoptosis of lymphocytes. The drastic increase in neutrophil versus lymphocyte (N:L) ratio observed in the presence of active nisin suggested that the decline in metabolic activity of S. aureus Xen 36 was due to an immune response triggered by the infection. Nisin, active or inactive, stimulated the activity of cytokines interleukin-6, interleukin-10 and tumour necrosis factor. However, the overall immune response triggered by both forms of nisin was too minute to trigger an abnormally high antigenic immune reaction.  相似文献   

12.
The effects of climate (precipitation and temperature) on sexual dimorphism and population structure were analysed along a broad-scale environmental gradient covering the distributional range of the endemic dioecious species Corema album, along the west coast of the Iberian Peninsula. We aimed to assess distribution constraints and sex-related differences in demography and size associated with higher reproductive investment in females. Nine populations were chosen from across the geographic range of C. album and ten 10 × 10 m plots were established (10 m apart) along a 200-m transect. All male, female and non-reproductive shrubs were quantified within each plot and plant size, photosynthetic layer, height, sex ratio, population density and structure, and spatial segregation of sexes, under environmental conditions ranging from temperate to Mediterranean climate, were recorded and analysed. Increased aridity was related to lower population density and less structured populations, indicating an effect of higher temperature and lower precipitation on regeneration. Sexual dimorphism was influenced by climate, with size differences between sexes varying with aridity. However, demographic differences between sexes reflected in sex ratio deviations or the occurrence of spatial segregation were unrelated to any climatic variable, suggesting the existence of compensatory mechanisms that may counterbalance the higher reproductive effort of female plants. The results show the vulnerability of this endemic species to the increase in aridity expected in the southernmost limit of the biogeographical area due to global climate change, and demonstrate the importance of broad scale studies in the assessment of sexual dimorphism.  相似文献   

13.
Modern pyrosequencing has the potential to uncover many interesting aspects of genome evolution, even in lineages where genomic resources are scarce. In particular, 454 pyrosequencing of nonmodel species has been used to characterize expressed sequence tags, xenobiotics, gene ontologies, and relative levels of gene expression. Herein, we use pyrosequencing to study the evolution of genes expressed in the gonads of a polyploid fish, the lake sturgeon (Acipenser fulvescens). Using 454 pyrosequencing of transcribed genes, we produced more than 125 MB of sequence data from 473,577 high-quality sequencing reads. Sequences that passed stringent quality control thresholds were assembled into 12,791 male contigs and 32,629 female contigs. Average depth of coverage was 4.2 × for the male assembly and 5.5× for the female assembly. Analytical rarefaction indicates that our assemblies include most of the genes expressed in lake sturgeon gonads. Over 86,700 sequencing reads were assigned gene ontologies, many to general housekeeping genes like protein, RNA, and ion binding genes. We searched specifically for sex determining genes and documented significant sex differences in the expression of two genes involved in animal sex determination, DMRT1 and TRA-1. DMRT1 is the master sex determining gene in birds and in medaka (Oryzias latipes) whereas TRA-1 helps direct sexual differentiation in nematodes. We also searched the lake sturgeon assembly for evidence of xenobiotic organisms that may exist as endosymbionts. Our results suggest that exogenous parasites (trematodes) and pathogens (protozoans) apparently have infected lake sturgeon gonads, and the trematodes have horizontally transferred some genes to the lake sturgeon genome.  相似文献   

14.
The little-known pirate bug Blaptostethus pallescens Poppius is a biocontrol agent observed in tropical tomato fields in Brazil regulating fruit borer populations. In this study, the lethal response of B. pallescens to the bioinsecticide azadirachtin and to two synthetic insecticides, chlorpyrifos and deltamethrin, was assessed. The mild effect of the azadirachtin label rate (0.006 mg a.i. ml?1) on the predator (median lethal time (LT50) of 27 days), relative to label rates of deltamethrin (0.02 mg a.i. ml?1) and chlorpyrifos (1.44 mg a.i. ml?1) (with LT50 of 25 and 60 min, respectively) led to the assessment of its potential sublethal effects. Azadirachtin did not cause behavioral avoidance in the pirate bug, but the daily fecundity, adult progeny production and sex ratio were impaired when both male and female parents were exposed. These effects reduced the population growth of the predator in subsequent generations. Therefore, although safer than the conventional synthetic insecticides tested, the bioinsecticide azadirachtin does impair predator reproduction requiring attention when used in fields with this biological control agent.  相似文献   

15.
Levels of genetic diversity and population genetic structure of the rare, endangered terrestrial orchid Liparis japonica were examined for eight natural populations (n = 185) in Northeast China using six AFLP primer pairs, where this species has experienced severe habitat loss and fragmentation. Based on 406 DNA bands, a high level of genetic diversity was found at the species level with the PPB of 85.47 %, while the genetic diversity at the population level was low (PPB = 47.48 %). A significantly high degree of population differentiation was found with 42.69 % variation existed among populations as measured by AMOVA, indicating potential restricted gene flow. The genetic distances between populations were independent of the corresponding geographic distances, and the genetic relationship of individuals had no significant correlation with their spatial distribution. The restricted gene flow might be impacted by reduced population size, habitat destruction and fragmentation. The results in this study suggested that habitat protection and keeping a stable environment are critical for the conservation of L. japonica species.  相似文献   

16.
In populations of dioecious plants, the differences in the cost of reproduction between male and female plants can promote a male-biased sex ratio. In this study, we examine the macronutrient levels in tissues of the dioecious wetland shrub Myrica gale to identify the cost of reproduction for male and female plants and to examine the effect of nutrients on the apparent sex ratio at the ramet level. We examined plants across 12 populations of M. gale inhabiting bogs and fens in Japan. For each population, we used line transects to estimate the apparent sex ratio and measured the concentrations of nitrogen (N), phosphorus (P), and potassium (K) in the leaves sampled from male and female plants and in the fruits from female plants. For five of the populations, we calculated the flowering frequency, mortality, and the recruitment rate (as the rate of clonal propagation). We found that the proportion of females was positively affected, and the male bias of sex ratios reduced, by increases in P concentration in leaves sampled from female plants. Neither mortality nor recruitment was affected by sex or by the nutrient concentration (P, K). The flowering frequency was not affected by sex or by K concentration, but decreased with decreases in the P concentration measured in leaves. This study confirmed that reproduction in M. gale is P-limited. We found no distinct differences in the flowering frequency, mortality, or recruitment rate between the male and female plants.  相似文献   

17.
Phenotypic plasticity is often considered important for invasive plant success, yet relatively few studies have assessed plasticity in both native and invasive populations of the same species. We examined the plastic response to temperature for Bromus tectorum populations collected from similar shrub-steppe environments in the Republics of Armenia and Georgia, where it is native, and along an invasive front in California and Nevada. Plants were grown in growth chambers in either ‘warm’ (30/20 °C, day/night) or ‘cold’ (10/5 °C) conditions. Invasive populations exhibited greater adaptive plasticity than natives for freezing tolerance (as measured by chlorophyll a fluorescence), such that invasive populations grown in the cold treatment exhibited the highest tolerance. Invasive populations also exhibited more rapid seedling emergence in response to warm temperatures compared to native populations. The climatic conditions of population source locations were related to emergence timing for invasive populations and to freezing tolerance across all populations combined. Plasticity in growth-related traits such as biomass, allocation, leaf length, and photosynthesis did not differ between native and invasive populations. Rather, some growth-related traits were very plastic across all populations, which may help to dampen differences in biomass in contrasting environments. Thus, invasive populations were found to be particularly plastic for some important traits such as seedling emergence and freezing tolerance, but plasticity at the species level may also be an important factor in the invasive ability of B. tectorum.  相似文献   

18.
According to evolutionary theory, sex ratio distortions caused by reproductive parasites such as Wolbachia and Spiroplasma are predicted to be rapidly normalized by the emergence of host nuclear suppressors. However, such processes in the evolutionary arms race are difficult to observe because sex ratio biases will be promptly hidden and become superficially unrecognizable. The evolution of genetic suppressors has been reported in just two insect species so far. In the small brown planthopper, Laodelphax striatellus, female-biases caused by Spiroplasma, which is a ‘late’ male-killer, have been found in some populations. During the continuous rearing of L. striatellus, we noted that a rearing strain had a 1 : 1 sex ratio even though it harboured Spiroplasma. Through introgression crossing experiments with a strain lacking suppressors, we revealed that the L. striatellus strain had the zygotic male-killing suppressor acting as a dominant trait. The male-killing phenotype was hidden by the suppressor even though Spiroplasma retained its male-killing ability. This is the first study to demonstrate the existence of a late male-killing suppressor and its mode of inheritance. Our results, together with those of previous studies, suggest that the inheritance modes of male-killing suppressors are similar regardless of insect order or early or late male killing.  相似文献   

19.
The life cycle of Tetranychus macfarlanei Baker and Pritchard was studied on two different medicinal plants, Clitoria ternatea L. and Justicia adhatoda L. Nees, in BOD at 32.5 °C and 75 % RH during April 2007 to May 2007. Observations towards duration of different stages like egg, larva, protonymph, deutonymph, adult, total life cycle, preoviposition, oviposition, postoviposition periods, longevity of female and male, and fecundity, sex ratio were recorded. Total developmental period of T. macfarlanei from egg to adult was 6.4 ± 0.37 (Mean ± SE) and 10.6 ± 0.56 days on C. ternatea and J. adhatoda, respectively. On C. ternatea, the fecundity in case of fertilized and unfertilized female were 91.6 ± 11.61 and 80 ± 21.64 eggs, respectively and longevity of fertilized and unfertilized female was 16.4 ± 1.44 and 8.6 ± 2.32 days, respectively. The corresponding figure on J. adhatoda for fecundity in case of fertilized and unfertilized female were 39 ± 2.85 and 19.8 ± 3.90 eggs, respectively and for longevity was 16 ± 0.37 and 11 ± 086 days, respectively. Among the two hosts, C. ternatea appears to be more preferred to J. adhatoda because life cycle was completed in shorter time and fecundity and female longevity were for longer duration.  相似文献   

20.
Models of environmental sex determination (ESD) usually assume that genetic influences on sex are polygenic, but the validity of this (or any other) form of genotype-environment interaction is virtually unknown. In the Atlantic silverside, Menidia menidia, sex is determined by an interaction between temperature and genotype and the response of sex ratio to temperature differs among populations from different latitudes. We examined the genetic basis of this pattern by measuring among family variation in the proportion of females, F/(F + M), within and among high (21°C) and low (15°C) temperatures for two populations: one from Nova Scotia (NS) where the level of ESD is low, and another from South Carolina (SC) where the level of ESD is high. In NS fish, temperature had a significant influence on sex ratio in only 1 of 23 families. The distribution of the fraction of females within temperatures for families from NS was highly heterogeneous and tended to fall into distinct classes (0.0, 0.25, 0.5, 1.0) like that expected from Mendelian segregation of a major sex factor(s). In contrast, temperature had a highly significant influence on sex ratio in all SC families examined (N = 24). Family sex ratios within temperatures were highly heterogeneous and, at least at 15°C, did not conform to simple Mendelian ratios. At 21°C, the proportion of females in most SC families was near zero and so the underlying sex tendencies of different families could not be discerned. Based on a previous study, mid-latitude fish appear to have an intermediate form of sex determination: simple Mendelian sex-ratio patterns exist and there is a moderate thermal influence on sex ratio in most but not all families. We suggest that sex determination in M. menidia is controlled by an interaction between major genetic factors, polygenic factors, and temperature and that the relative importance of each component differs with latitude. High latitude populations appear to have evolved a major sex-determining factor(s) that overrides the effect of temperature, and this factor(s) is lacking in low latitude populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号