首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Physiological characterization of 'stay green' mutants in durum wheat   总被引:18,自引:0,他引:18  
Four mutants with delayed leaf senescence were selected from seed of durum wheat mutagenized with ethylmethane sulphonate. Changes in net photosynthetic rate, efficiency of photosystem II and chlorophyll concentration during the maturation and senescence of the flag leaves of both mutant and parental plants were determined under glasshouse conditions. The four mutant lines maintained photosynthetic competence for longer than the parental line and are therefore functionally 'stay green'. The mutant lines also had higher seed weights and grain yields per plant than the parental line.  相似文献   

2.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

3.
The most promising traits identified in wheat to raise yield potential via an increase in biomass accumulation are stomatal conductance and stomatal‐conductance‐related traits, such as carbon isotope discrimination (CID) and photosynthetic rate. The evaluation of the extent of genetic variation and the mapping of chromosomal regions controlling these traits are essential for the development of effective breeding strategies in durum wheat. A population of 161 F2‐derived, F8–F9 recombinant inbred lines obtained from a cross between durum wheat (Triticum turgidum ssp. durum) cultivars Ofanto and Cappelli was phenotyped for heading date, plant height, leaf porosity, CID and chlorophyll concentration (estimated through the SPAD index) for 2007/2008 and 2008/2009 seasons, at Ottava, Sardinia (Italy) under irrigated conditions. The genotype mean heritability for leaf porosity, CID and chlorophyll concentration was moderate in size. Six quantitative trait loci were detected for leaf porosity, four for chlorophyll concentration, but only one for CID, because of the small variation expressed in the population for this trait under these experimental conditions. The quantitative trait loci for leaf porosity located on chromosome 3B appear to be more stable with respect to the others, and different microsatellite markers are positioned within the interval of the quantitative trait loci, or in their vicinity, that represent useful tools in programmes for selection assisted by molecular markers.  相似文献   

4.
Hui Z  Tian FX  Wang GK  Wang GP  Wang W 《Plant cell reports》2012,31(6):1073-1084
Wheat, which is the most important food crop worldwide, is a cereal that presents considerable potential for increased yield. A new wheat (Triticum aestivum L.) mutant tasg1 with delayed leaf senescence was constructed using ethyl methane sulfonate as a mutagen. Natural senescence in tasg1 was distinctly delayed in the field, as indicated by the slower progression of chlorophyll degradation, net photosynthetic rate than its wild type. Further, the malondialdehyde and the hydrogen peroxide content was lower and antioxidative enzyme activity higher in tasg1 than those in its wild type during both natural senescence and methyl viologen-induced oxidative stress. The results suggest that tasg1 is a functional stay-green wheat mutant with the Type B (in which senescence initiates on schedule, but progresses at a rate lower than that in the respective WTs) or Type A (in which senescence initiates late but proceeds at a normal rate) and B combination and that the competence of the antioxidant defense system is one of the most important mechanisms underlying the expression of the stay-green phenotype.  相似文献   

5.
Wheat leaf non-sequential senescence at the late grain-filling stage involves the early senescence of younger flag leaves compared to that observed in older second leaves. On the other hand, sequential senescence involves leaf senescence that follows an age-related pattern, in which flag leaves are the latest to undergo senescence. The characteristics of sugar metabolism in two sequential senescence cultivars and two non-sequential senescence cultivars under both natural and drought conditions were studied to elucidate the underlying mechanism of drought tolerance in two different senescence modes. The results showed that compared to sequential senescence wheat cultivars, under natural and drought conditions, non-sequential senescence wheat cultivars showed a higher leaf net photosynthetic rate, higher soluble sugar levels in leaves, leaf sheaths, and internodes, higher leaf sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity, and higher grain SS activity, thereby suggesting that non-sequential senescence wheat cultivars had stronger source activity. Spike weight, grain weight per spike, and 100-grain weight of non-sequential senescence cultivars at maturity were significantly higher than those of sequential senescence cultivars under both natural and drought conditions. These findings indicate that the higher rate of accumulation and the higher mobilization of soluble sugar in the leaves, leaf sheaths and internodes of non-sequential senescence cultivars improve grain weight and drought tolerance. At the late grain-filling stage, drought conditions adversely affected leaf chlorophyll content, net photosynthetic rate, soluble sugar and sucrose content, SS and SPS activity, gain SS activity, and weight. This study showed that higher rates of soluble sugar accumulation in the source was one of the reasons of triggering leaf non-sequential senescence, and higher rates of soluble sugar mobilization during leaf non-sequential senescence promoted high and stable wheat yield and drought tolerance.  相似文献   

6.
Certain cultivars of some crops, including durum wheat (Triticum durum Desf.), have a propensity to accumulate cadmium in the grain. In the 1980s, a Canadian wheat breeding program generated five pairs of near-isogenic lines of durum wheat that vary in cadmium-accumulation. Within each pair, one member accumulates twofold to threefold higher concentrations of cadmium in the shoot and grain. However, the physiological explanation for the high-low phenotype is unknown. We studied correlations between concentrations of cadmium and non-protein thiols, including phytochelatins, in these five pairs of near-isogenic lines to test the hypothesis that differential retention of cadmium-binding complexes in the root would explain the phenotype. The expected high-low pattern of cadmium accumulation was found in three of the pairs. In one pair, cadmium was positively correlated with cysteine and glutathione in the roots and with phytochelatins 2 and 4 in the shoots but in another pair cadmium was strongly negatively correlated with phytochelatins 2 and 4 in the shoots and unrelated to cysteine or glutathione. No correlations between concentrations of cadmium and the non-protein thiols were found in the third pair or in the remaining two pairs. The production of phytochelatins is a well-described response to cadmium but the lack of consistent correlation between cadmium and non-protein thiols in these five near-isogenic lines indicates that complexation with non-protein thiols does not explain differential translocation of cadmium in durum wheat.  相似文献   

7.
8.
Quantitative genetic analysis and mapping of leaf angle in durum wheat   总被引:1,自引:0,他引:1  
The leaf erectness profile has been used to optimize plant architecture since erect leaves can enhance photosynthesis and dry matter production by greater sunlight capture. Brassinosteroid is a recent class of phytohormones that has been related to a more erect profile. There are no reports in the literature of the genetic variability of leaf angle in doubled haploid durum wheat populations; most studies on leaf angle have focused on the inheritance. Our aim was to study the genetic variation in flag and penultimate leaf angle in a durum wheat doubled haploid mapping population, identifying and mapping quantitative trait loci influencing leaf angle. An F1-derived doubled haploid population of 89 lines from the cross Strongfield/Blackbird was used to construct a genetic map using 423 molecular marker loci. Two greenhouse experiments and one field test were conducted using an alpha lattice in a randomized complete block design with three replicates. The leaf angle was measured on flag and penultimate leaf with a protractor at three different growth stages. The results indicated poor to moderate correlations between the position of the leaf angle and the growth stage. Transgressive segregation beyond Strongfield and Blackbird of leaf angle was observed for all environments. Putative trait loci were identified on chromosomes 2A, 2B, 3A, 3B, 4B, 5B and 7A. This work helps to understand the genetics of leaf angle in durum wheat.  相似文献   

9.
Seven varieties of bred wheat and seven varieties of durum wheat were cultivated in three different sites from the area of Errachidia (southeastern Morocco). These sites differ by the degree of salinity in the irrigation water. Results obtained showed that the reduction in leaf area is the principal strategy that makes it possible to attenuate the effects of the reduction in the availability of water under saline stress. Bread wheat, which limited the reduction in the leaf area, with the risk to undergo some hydrous problems, seems to better preserve its photosynthetic potentialities and grain productivity.  相似文献   

10.
Increasing photosynthetic capacity by extending canopy longevity during grain filling using slow senescing stay-green genotypes is a possible means to improve yield in wheat.Ethyl methanesulfonate (EMS...  相似文献   

11.
The quality of durum wheat (Triticum turgidum ssp. durum) is influenced by polyphenol oxidase(PPO) activity and its corresponding substrates. A saturated molecular-marker linkage map was constructed previously by using a set of recombinant inbred (RI) lines, derived from a cross between durum wheat cultivars Jennah Khetifa and Cham 1. Quantitative trait loci (QTL) for PPO activity in seeds were mapped in this population. PPO activity in seeds of the parents and 110 RI lines was measured spectrophotometrically. The PPO activity of Cham 1 was significantly lower than that of Jennah Khetifa. QTL analysis of these data indicated that most of PPO activity was associated with major loci on the long arm of chromosome 2A. The trait was found to be strongly associated with the SSR marker Xgwm312@2A. With this knowledge, marker-assisted selection can be used to select genotypes with lower PPO activity in durum wheat populations.  相似文献   

12.
The objective of this study was to investigate the effect of individual durum wheat (Triticum turgidum L.) chromosomes on crossability with maize (Zea mays L.) and to cytologically characterize the haploids recovered. Fourteen 'Langdon' (LDN) D-genome disomic substitution lines, a LDN Ph mutant (Ph1b ph1b), and normal 'Langdon' were pollinated with maize pollen. After pollination, hormonal treatment was given daily for up to 14 days. Haploid embryos were obtained from all lines and were aseptically cultured. From a total of 55,358 pollinated florets, 895 embryos were obtained. Only 14 of the embryos germinated and developed into healthy plants. Different substitution lines showed varying degrees of success. The most successful was the substitution 5D(5B) for both embryo formation and haploid plantlet production. These results indicate that the substitution of 5D for 5B confers on durum wheat a greater ability to produce haploids. Fluorescent genomic in situ hybridization (GISH) showed that the substitution haploids consisted of 7 A-genome chromosomes, 6 B-genome chromosomes, and 1 D-genome chromosome. Triticum urartu Turn. genomic DNA was efficient in probing the 7 A-genome chromosomes, although the D-genome chromosome also showed intermediate hybridization. This shows a close affinity between the A genome and D genome. We also elucidated the evolutionary translocation involving the chromosomes 4A and 7B that occurred at the time of evolution of durum wheat. We found that the distal segment translocated from chromosome 7B constitutes about 24% of the long arm of 4A.  相似文献   

13.
The capacity of plants to tolerate high levels of salinity depends on the ability to exclude salt from the shoot, or to tolerate high concentrations of salt in the leaf (tissue tolerance). It is widely held that a major component of tissue tolerance is the capacity to compartmentalize salt into safe storage places such as vacuoles. This mechanism would avoid toxic effects of salt on photosynthesis and other key metabolic processes. To test this, the relationship between photosynthetic capacity and the cellular and subcellular distribution of Na+, K+ and Cl- was studied in salt-sensitive durum wheat (cv. Wollaroi) and salt-tolerant barley (cv. Franklin) seedlings grown in a range of salinity treatments. Photosynthetic capacity parameters (Vcmax, Jmax) of salt-stressed Wollaroi decreased at a lower leaf Na+ concentration than in Franklin. Vacuolar concentrations of Na+, K+ and Cl- in mesophyll and epidermal cells were measured using cryo-scanning electron microscopy (SEM) X-ray microanalysis. In both species, the vacuolar Na+ concentration was similar in mesophyll and epidermal cells, whereas K+ was at higher concentrations in the mesophyll, and Cl- higher in the epidermis. The calculated cytoplasmic Na+ concentration increased to higher concentrations with increasing bulk leaf Na+ concentration in Wollaroi compared to Franklin. Vacuolar K+ concentration was lower in the epidermal cells of Franklin than Wollaroi, resulting in higher cytoplasmic K+ concentrations and a higher K+ : Na+ ratio. This study indicated that the maintenance of photosynthetic capacity (and the resulting greater salt tolerance) at higher leaf Na+ levels of barley compared to durum wheat was associated with the maintenance of higher K+, lower Na+ and the resulting higher K+ : Na+ in the cytoplasm of mesophyll cells of barley.  相似文献   

14.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

15.
Martini  G.  Bozzini  A. 《Chromosoma》1966,20(2):251-266
The cytological behaviour and the inheritance of two asynaptic mutations independently obtained by neutron treatment of durum wheat seeds of var. Cappelli and Aziziah are considered. Mutant individuals of both lines have normal morphology, but are completely sterile. Analysis of chromosome behaviour at the several stages of PMC meiosis has been thoroughly accomplished in mutant progenies of both varieties during two subsequent generations. A completely random chromosome disjunction was found at anaphase I, together with multipolar spindles, laggard chromosomes etc. At meiotic second division a large amount of abnormalities were found, as a consequence of previous asynapsis and irregular polarization. Some differences in cytological behaviour were found between the asynaptic mutants of Cappelli and the asynaptics of Aziziah. - Genetic analysis demonstrated that both mutations behave as monogenic recessives.Contribution No. 139 from the Laboratory for the Application of nuclear energy to Agriculture, Casaccia Nuclear Studies Centre, Roma, Italy. - Part of the investigation was supported by Consiglio Nazionale delle Ricerche (Gruppo di lavoro per il miglioramento genetico delle piante erbacee e cultivate, Sottogruppo per il grano duro).  相似文献   

16.
Isolation,characterization, and mapping of the stay green mutant in rice   总被引:25,自引:0,他引:25  
Leaf color turns yellow during senescence due to the degradation of chlorophylls and photosynthetic proteins. A stay green mutant was isolated from the glutinous japonica rice Hwacheong-wx through N-methyl-N-nitrosourea mutagenesis. Leaves of the mutant remained green, while turning yellow in those of the wild-type rice during senescence. The stay green phenotype was controlled by a single recessive nuclear gene, tentatively symbolized as sgr(t). All the phenotypic characteristics of the mutant were the same as those of the wild-type lines except for the stay green trait. The leaf chlorophyll concentration of the mutant was similar to that of the wild-type before heading, but decreased steeply in the wild-type during grain filling, while very slowly in the mutant. However, no difference in photosynthetic activity was observed between the stay green mutant and the yellowing wild-type leaves, indicating that senescence is proceeding normally in the mutant leaves and that the mutation affects the rate of chlorophyll degradation during the leaf senescence. Using phenotypic and molecular markers, we mapped the sgr(t) locus to the long arm of chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals, respectively. Received: 29 April 2001 / Accepted: 17 July 2001  相似文献   

17.
18.
The action of species cytoplasm specific (scs) gene(s) can be observed when a durum (Triticum turgidum L.) nucleus is placed in the Aegilops longissimum S. & M. cytoplasm. This alloplasmic combination, (lo) durum, results in nonviable progeny. A scs gene derived from T. timopheevii Zhuk. (scs(ti)) produced compatibility with the (lo) cytoplasm. The resulting hemizygous (lo) scs(ti)- durum line was male sterile and when crossed to normal durum produced a 1:1 ratio of plump, viable (PV) seeds with scs(ti) and shriveled inviable (SIV) seeds without scs(ti). In a systematic characterization of durum lines an unusual line was identified that when crossed to (lo) scs(ti)- produced all PV seeds. When planted these PV seeds segregated at a 1:1 ratio of normal vigor plants (NVPs) and low vigor plants (LVPs). The LVP senescence before full maturity. The NVPs were male sterile and when crossed to common durum lines resulted in all plump seeds that again segregated at a 1:1 ratio of NVPs to LVPs. The crosses of these NVPs to common durum lines resulted in a 1:1 ratio of PV to SIV seeds. This study was extended to 317 individuals segregating for scs(ti) and the new locus, derived from durum wheat (scs(d)), establishing the allelic relationship of these two genes.  相似文献   

19.
Chromosome 7E from Lophopyrum ponticum carries a valuable leaf rust resistant gene designated Lr19. This gene has not been widely used in common wheat breeding because of linkage with the yellow pigment gene Y. This gene tints flour yellow, reducing its appeal in bread making. However, a high level of yellow pigment is desirable in durum wheat breeding. We produced 97 recombinant chromosomes between L. ponticum transfer 7D.7E#1 and its wheat homoeologues, using the ph1b mutation that promotes homoeologous pairing. We characterized a subset of 37 of these lines with 11 molecular markers and evaluated their resistance to leaf rust and the abundance of yellow pigment. The Lr19 gene was mapped between loci Xwg420 and Xmwg2062, whereas Y was mapped distal to Xpsr687, the most distal marker on the long arm of chromosome 7. A short terminal 7EL segment translocated to 7A, including Lr19 and Y (line 1-23), has been transferred to durum wheat by backcrossing. The presence of this alien segment significantly increased the abundance of yellow pigment. The Lr19 also conferred resistance to a new durum leaf rust race from California and Mexico that is virulent on most durum wheat cultivars. The new durum lines with the recombinant 7E segment will be useful parents to increase yellow pigment and leaf rust resistance in durum wheat breeding programs. For the common wheat breeding programs, we selected the recombinant line 1-96, which has an interstitial 7E segment carrying Lr19 but not Y. This recombinant line can be used to improve leaf rust resistance without affecting flour color. The 7EL/7DL 1-96 recombinant chromosome did not show the meiotic self-elimination previously reported for a 7EL/7BL translocation.  相似文献   

20.
Durum wheat (Triticum turgidum subsp. durum) is more salt sensitive than bread wheat (Triticum aestivum). A novel source of Na(+) exclusion conferring salt tolerance to durum wheat is present in the durum wheat Line 149 derived from Triticum monococcum C68-101, and a quantitative trait locus contributing to low Na(+) concentration in leaf blades, Nax1, mapped to chromosome 2AL. In this study, we used the rice (Oryza sativa) genome sequence and data from the wheat expressed sequence tag deletion bin mapping project to identify markers and construct a high-resolution map of the Nax1 region. Genes on wheat chromosome 2AL and rice chromosome 4L had good overall colinearity, but there was an inversion of a chromosomal segment that includes the Nax1 locus. Two putative sodium transporter genes (TmHKT7) related to OsHKT7 were mapped to chromosome 2AL. One TmHKT7 member (TmHKT7-A1) was polymorphic between the salt-tolerant and -sensitive lines, and cosegregated with Nax1 in the high-resolution mapping family. The other TmHKT7 member (TmHKT7-A2) was located within the same bacterial artificial chromosome contig of approximately 145 kb as TmHKT7-A1. TmHKT7-A1 and -A2 showed 83% amino acid identity. TmHKT7-A2, but not TmHKT7-A1, was expressed in roots and leaf sheaths of the salt-tolerant durum wheat Line 149. The expression pattern of TmHKT7-A2 was consistent with the physiological role of Nax1 in reducing Na(+) concentration in leaf blades by retaining Na(+) in the sheaths. TmHKT7-A2 could control Na(+) unloading from xylem in roots and sheaths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号