首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The binding of 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform 1 (CNP1) to myelin and its association with cytoskeletal elements of the sheath have been characterized with in vitro synthesized polypeptides and purified myelin. We have previously shown that the cysteine residue present in the carboxy-terminal CXXX box of CNP1 is isoprenylated, and that both C15 farnesyl and C20 geranylgeranyl isoprenoids can serve as substrates for the modification. Here, we have mutated the CXXX box to obtain selectively farnesylated CNP1 or geranyl-geranylated CNP1 and found that these two modified forms of CNP1 behave identically in all of the assays performed. Isoprenylation is essential but not sufficient for the binding of in vitro synthesized CNP1 to purified myelin, because a control nonmyelin protein is isoprenylated, yet unable to bind to myelin. In our assay, membrane-bound CNP1 partitions quantitatively into the non-ionic detergent-insoluble phase of myelin, suggesting that CNP1 binds to cytoskeletal elements within myelin. However, isoprenylated CNP1 fails to bind to the cytoskeletal matrix isolated from myelin by detergent treatment, implying that both detergent-soluble and insoluble myelin components are involved in the binding of CNP1. A model for the interactions between CNP1 and myelin is presented, consistent with models proposed for other isoprenylated proteins.  相似文献   

2.
We report a selective, differential stimulus-dependent enrichment of the actin-associated protein α-actinin and of isoforms of the signaling enzyme protein kinase C (PKC) in the neutrophil cytoskeleton. Chemotactic peptide, activators of PKC, and cell adhesion all induce a significant increase in the amount of cytoskeletal α-actinin and actin. Increased association of PKCβI and βII with the cytoskeletal fraction of stimulated cells was also observed, with phorbol ester being more effective than chemotactic peptide. A fraction of phosphatase 2A was constitutively associated with the cytoskeleton independent of cell activation. None of the stimuli promoted association of vinculin or myosin II with the cytoskeleton. Phosphatase inhibitors okadaic acid and calyculin A prevented increases in cytoskeletal actin, α-actinin, and PKCβII induced by phorbol ester, suggesting the requirement for phosphatase activity in these events. Increases in cytoskeletal α-actinin and PKCβII showed differing sensitivity to agents that prevent actin polymerization (cytochalasin D, latrunculin A). Latrunculin A (1 μM) completely blocked PMA-induced increases in cytoskeletal α-actinin but reduced cytoskeletal recruitment of PKCβII only by 16%. Higher concentrations of latrunculin A (4 μM), which almost abolished the cytoskeletal actin pool, reduced cytoskeletal PKCβII by 43%. In conclusion, a selective enrichment of cytoskeletal and signaling proteins in the cytoskeleton of human neutrophils is induced by specific stimuli.  相似文献   

3.
Abstract: Myelin proteins and the total Wolfgram protein fraction were isolated from the CNS of several mammalian species and characterized with rabbit anti-bovine 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) antisera after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose membranes. The corresponding CNP proteins cross-reacted across all species examined, suggesting that the CNP amino acid sequence was fairly well conserved in all six species. The same corresponding proteins were also identified immunochemically in the crude total Wolfgram protein fraction in the region of the W1 myelin protein, thus further supporting and extending two different previous reports indicating a relationship between CNP and the W1 protein. In addition to these CNS enzyme sources, peripheral nervous system CNP (rabbit and rat sciatic nerve) was also recognized by these same rabbit anti-bovine (CNS) CNP antisera. CNP was also detected in freshly isolated delipidated bovine oligodendrocyte membranes. These results suggest that rabbit anti-bovine CNP antisera may be of use in localization and structural studies of this enzyme in several different species and will permit clear identification of CNP in oligodendrocytes and their isolated membrane fractions.  相似文献   

4.
Isoprenylation facilitates the association of proteins with intracellular membranes and/or other proteins. In mammalian and yeast cells, isoprenylated proteins are involved in signal transduction, cell division, organization of the cytoskeleton, and vesicular transport. Recently, protein isoprenylation has been demonstrated in higher plants, but little is currently known about the functions of isoprenylated plant proteins. We report that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (lovastatin) or prenyl:protein transferases (perilly alcohol) severely impair the growth of cultured tobacco (Nicotiana tabacum) cells but only when added within the first 2 d following transfer to fresh medium, before any increase in culture volume is detectable. This "window" of sensitivity to inhibitors of protein isoprenylation correlates temporally with an increase in [14C]mevalonate incorporation into tobacco cell proteins in vitro. We have also observed a marked increase in farnesyl:protein transferase activity at this early time in the growth of tobacco cultures. In contrast, type I geranylgeranyl:protein transferase activity does not change significantly during culture growth. Although these events coincide with the replication of DNA, I [mu]M lovastatin-treated cells are capable of DNA synthesis, suggesting that lovastatin-induced cell growth arrest is not due to inhibition of DNA replication. Together, these data support the hypothesis that protein isoprenylation is necessary for the early stages of growth of tobacco cultures.  相似文献   

5.
Abstract: The relationship of the cytoskeleton to a biochemical expression of oligodendroglial differentiation was studied in cultured C-6 glial cells. Specifically, we investigated the effect of the cytoskeletal perturbants, colchicine and cytochalasin D, on the induction of the oligodendroglial marker enzyme. 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), caused by removal of serum from the culture medium. Each drug inhibited CNP induction in a concentration-dependent manner, and essentially complete inhibition of induction was observed with 0.25 μ M colchicine or 2.0μ M cytochalasin D. Detailed study of the effect of colchicine was carried out. This antimicrotubular agent not only totally prevented induction if added at the onset of serum removal, but also prevented further induction when added at various times after serum removal. That the effect of colchicine related to the drug's effect on microtubules was supported by the demonstration that lumicolchicine, a colchicine isomer which has no effect on microtubules, had no effect on the CNP induction. Moreover, colchicine, but not lumicolchicine, prevented the morphological signs of differentiation provoked by serum removal. The effect of colchicine was reversible and relatively specific. Thus, no concomitant effect of colchicine on the activity of another plasma membrane enzyme of C-6 cells, i.e., (Na++ K +)-acti-vated ATPase, or on the rate of incorporation of [3H]leucine into total protein of intact cells could be discerned. The possibility that the site of the effect of colchicine is on intracellular events was suggested by the observation that the drug inhibited the induction of CNP by dibutyryl cyclic AMP. The data suggest that the cytoskeleton is involved in oligodendroglial differentiation.  相似文献   

6.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

7.
2,3'-Cyclic nucleotide-3'-phosphodiesterase (CNP) is a myelin-associated protein, an enzyme abundantly present in the central nervous system of mammals and some vertebrates. In vitro, CNP specifically catalyzes the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate is still unknown. Recently, it was found that CNP is a possible linker protein between microtubules and the plasma membranes. Since CNP is modified post-translationally by an isoprenylation process at its C terminus, the prenylation is hypothesized to be a requisite process, which permanently anchors CNP to the plasma membrane. This study investigates the molecular mechanism of the interaction between CNP and the plasma membrane, proposing a general model to interpret the structural bases of prenylated proteins binding to the membrane. A 13 residue, C-terminal CNP fragment, C13, was demonstrated to be directly responsible for CNP membrane anchoring. C13 and its lipidated derivative (LIPO-C13) were subjected to conformational analysis in membrane mimetic environments, by means of CD and NMR spectroscopies. The orientation of C13 in relation to the membrane was investigated by NMR and EPR spin labeling studies. Our structural investigation shows that the presence of the lipidic tail is essential for the peptide to be folded and correctly positioned on the membrane surface. A general model is proposed in which the post-translational lipidation is an important biomolecular trick to enlarge the hydrophobic surface and to enable the contact of the protein with membrane.  相似文献   

8.
9.
c-Src is normally associated with the plasma membrane, but upon activation by tyrosine kinase receptors it translocates to the cytoskeleton. Activation of c-Src alters its conformation and induces the association of c-Src with cytoskeletal proteins. c-Src is implicated in tyrosine phosphorylation of cytoskeletal proteins, which might affect the cytoskeletal architecture. Rearrangements of the cytoskeleton affect cell-matrix adhesion and cell migration. In this study NIH3T3 fibroblasts, that overexpress c-Src, were used to analyze the effect of c-Src on both cell-matrix adhesion and cell migration. Upon PDGF stimulation translocation of c-Src to the cytoskeleton was detected. PDGF treatment also increased cell-matrix adhesion and cell migration. The cell line with the highest c-Src expression showed the largest increases in both phenomena. These findings suggest that translocation of c-Src to the cytoskeleton results in enhanced cell-matrix adhesion and cell migration.  相似文献   

10.
Villidin is a novel multidomain protein (190 kDa) from Dictyostelium amoebae containing WD repeats at its N-terminus, three PH domains in the middle of the molecule, and five gelsolin-like segments at the C-terminus, followed by a villin-like headpiece. Villidin mRNA and protein are present in low amounts during growth and early aggregation, but increase during development and reach their highest levels at the tipped mound stage. The protein is present in the cytosol as well as in the cytoskeletal and membrane fractions. GFP-tagged full-length villidin exhibits a similar distribution as native villidin, including a distinct colocalization with Golgi structures. Interestingly, GFP fusions with the gelsolin/villin-like region are uniformly dispersed in the cytoplasm, whereas GFP fusions of the N-terminal WD repeats codistribute with F-actin and are associated with the Triton-insoluble cytoskeleton. Strains lacking villidin because of targeted deletion of its gene grow normally and can develop into fruiting bodies. However, cell motility is reduced during aggregation and phototaxis is impaired in the mutant strains. We conclude that villidin harbors a major F-actin binding site in the N-terminal domain and not in the villin-like region as expected; association of villidin with vesicular membranes suggests that the protein functions as a linker between membranes and the actin cytoskeleton.  相似文献   

11.
Oligodendrocytes (OLs) extend arborized processes that are supported by microtubules (MTs) and microfilaments. Little is known about proteins that modulate and interact with the cytoskeleton during myelination. Several lines of evidence suggest a role for 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in mediating process formation in OLs. In this study, we report that tubulin is a major CNP-interacting protein. In vitro, CNP binds preferentially to tubulin heterodimers compared with MTs and induces MT assembly by copolymerizing with tubulin. CNP overexpression induces dramatic morphology changes in both glial and nonglial cells, resulting in MT and F-actin reorganization and formation of branched processes. These morphological effects are attributed to CNP MT assembly activity; branched process formation is either substantially reduced or abolished with the expression of loss-of-function mutants. Accordingly, cultured OLs from CNP-deficient mice extend smaller outgrowths with less arborized processes. We propose that CNP is an important component of the cytoskeletal machinery that directs process outgrowth in OLs.  相似文献   

12.
Evidence is presented that the major protein components of the high molecular weight CNS myelin proteins designated as the Wolfgram protein doublet (W1 and W2) contain the enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37, CNP). CNP is a basic hydrophobic protein containing about 830 to 840 amino acid residues. When electrophoresed on SDS polyacrylamide gels, CNP appears as a protein doublet, separated by a molecular weight difference of about 2500-3000 in bovine, human, rat, guinea pig, and rabbit. A similar protein doublet has been identified as the Wolfgram proteins W2 and W1 in myelin and in the chloroform-methanol-insoluble pellet obtained from myelin. Moreover, the relative Coomassie blue staining intensity of the CNP2 plus CNP1 protein doublet among the species examined was remarkably similar to that observed for electrophoresed myelin and chloroform-methanol-insoluble pellet derived from myelin. Antisera raised against purified bovine CNP recognized the W1 and W2 proteins isolated from bovine and human brain. The amino acid composition of pure bovine CNP is presented and compared with the compositions of several rat and bovine Wolfgram proteins obtained by other investigators. Our electrophoretic, compositional, and immunological data support the contention that the enzyme CNP is a major component of the Wolfgram protein doublet.  相似文献   

13.
Abstract: In PNS, the specific activity of 2′,3′-cyclic nucleotide 3′-phospho–diesterase (CNP) in myelin was not enriched over the starting homogenate. Nevertheless, most of the total activity was recovered in myelin. In myelin-deficient mutants, low CNP activities were measured in sciatic nerves. CNP specific activities were similar in myelinated and non-myelinated nerves but in non-nervous tissues, they were significantly lower than in nervous tissue. There was no indication for the presence of an isoenzyme of CNP in peripheral nerves. These results indicate that CNP is present in PNS myelin and preferentially localized in Schwann cell plasma membranes.  相似文献   

14.
Bruton's tyrosine kinase (Btk) plays a crucial role in the maturation and differentiation of B-lymphocytes and immunoglobulin synthesis. Recently Btk has been described to be present in significant amount in human platelets. To investigate the regulation of this kinase in the platelets we studied its subcellular redistribution in the resting and activated cells. In the resting platelets Btk was almost absent from the actin-based cytoskeleton. Upon challenge of the platelet thrombin receptor upto 30% of total Btk appeared in the cytoskeleton and the protein underwent phosphorylation on tyrosine. Translocation of Btk to the cytoskeleton but not aggregation was prevented by cytochalasin B, which inhibits actin polymerization. Wortmannin and genistein (inhibitors of phosphoinositide 3-kinase and protein tyrosine kinase, respectively) decreased while phenylarsine oxide (a tyrosine phosphatase inhibitor) increased the cytoskeletal content of Btk. The association of Btk with the cytoskeleton was regulated by integrin alpha(IIb)beta(3) and partly reversible. Taken together, these data suggest that Btk might be a component of a signaling complex containing specific cytoskeletal proteins in the activated platelets.  相似文献   

15.
We studied the association of several eucaryotic viral and cellular mRNAs with cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs appear to associate with the cytoskeletal structure during protein synthesis, irrespective of their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA was not released from the cytoskeleton during vesicular stomatitis virus infection although actin synthesis was inhibited. In addition, several other conditions under which protein synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. We conclude that the association of mRNA with the cytoskeletal framework is required but is not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a unique mechanism that leads to the release of host mRNAs from the cytoskeleton.  相似文献   

16.
Putative binding sites for zinc are present in the regulatory domain of protein kinase C but a distinct role for zinc has not yet been proposed. Here we show that micromolar concentrations of zinc chloride cause pure rat brain protein kinase C to localize in a detergent-insoluble, cytoskeletal fraction of red cell membranes and to bind to isolated cytoskeleton in the presence of phosphatidylserine. Attachment of protein kinase C to cytoskeleton was accompanied by enhanced expression of binding sites for 3H-phorbol ester, a regulatory ligand of protein kinase C. The active factor in the cytoskeleton was labile to protease suggesting that protein kinase C binds to a cytoskeletal protein.  相似文献   

17.
Analysis of the expression and assembly of the anion transporter by metabolic pulse-chase and steady-state protein and RNA measurements reveals that the extent of association of band 3 with the membrane cytoskeleton varies during chicken embryonic development. Pulse-chase studies have indicated that band 3 polypeptides do not associate with the membrane cytoskeleton until they have been transported to the plasma membrane. At this time, band 3 polypeptides are slowly recruited, over a period of hours, onto a preassembled membrane cytoskeletal network and the extent of this cytoskeletal assembly is developmentally regulated. Only 3% of the band 3 polypeptides are cytoskeletal-associated in 4-d erythroid cells vs. 93% in 10-d erythroid cells and 36% in 15-d erythroid cells. This observed variation appears to be regulated primarily at the level of recruitment onto the membrane cytoskeleton rather than by different transport kinetics to the membrane or differential turnover of the soluble and insoluble polypeptides and is not dependent upon the lineage or stage of differentiation of the erythroid cells. Steady-state protein and RNA analyses indicate that the low levels of cytoskeletal band 3 very early in development most likely result from limiting amounts of ankyrin and protein 4.1, the membrane cytoskeletal binding sites for band 3. As embryonic development proceeds, ankyrin and protein 4.1 levels increase with a concurrent rise in the level of cytoskeletal band 3 until, on day 10 of development, virtually all of the band 3 polypeptides are cytoskeletal bound. After day 10, the levels of total and cytoskeletal band 3 decline, whereas ankyrin and protein 4.1 continue to accumulate until day 18, indicating that the cytoskeletal association of band 3 is not regulated solely by the availability of membrane cytoskeletal binding sites at later stages of development. Thus, multiple mechanisms appear to regulate the recruitment of band 3 onto the erythroid membrane cytoskeleton during chicken embryonic development.  相似文献   

18.
The epidermal growth factor receptor (EGF-R) on human epidermoid carcinoma cells, A431, was found to be predominantly associated with the detergent-insoluble cytoskeleton, where it retained both a functional ligand-binding domain and an intrinsic tyrosine kinase activity. The EGF-R was constitutively associated with the A431 cytoskeleton; this association was not a consequence of adventitious binding. The EGF-R was associated with cytoskeletal elements both at the cell surface, within intracellular vesicles mediating the internalization of the hormone-receptor complex, and within lysosomes. The EGF-R became more stably associated with cytoskeletal elements after its internalization. The cytoskeletal association of the EGF-R was partially disrupted on suspension of adherent cells, indicating that alteration of cellular morphology influences the structural association of the EGF-R, and that the EGF-R is not intrinsically insoluble. Cytoskeletons prepared from EGF-treated A431 cells, when incubated with gamma-32P-ATP, demonstrated enhanced autophosphorylation of the EGF-R in situ as well as the phosphorylation of several high molecular weight proteins. In this system, phosphorylation occurs between immobilized kinase and substrate. The EGF-R and several high molecular weight cytoskeletal proteins were phosphorylated on tyrosine residues; two of the latter proteins were phosphorylated transiently as a consequence of EGF action, suggesting that EGF caused the active redistribution of the protein substrates relative to protein kinases. The ability of EGF to stimulate protein phosphorylation in situ required treatment of intact cells at physiological temperatures; addition of EGF directly to cytoskeletons had no effect. These data suggest that the structural association of the EGF-R may play a role in cellular processing of the hormone, as well as in regulation of the EGF-R kinase activity and in specifying its cellular substrates.  相似文献   

19.
In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.  相似文献   

20.
The Gram-positive pathogen Listeria monocytogenes induces its own internalization into some non-phagocytic mammalian cells by stimulating host tyrosine phosphorylation, phosphoinositide (PI) 3-kinase activity, and rearrangements in the actin cytoskeleton. Entry into many cultured cell lines is mediated by the bacterial protein InlB. Here we investigate the role of InlB in regulating mammalian signal transduction and cytoskeletal structure. Treatment of Vero cells with purified InlB caused rapid and transient increases in the lipid products of the PI 3-kinase p85-p110, tyrosine phosphorylation of the mammalian adaptor proteins Gab1, Cbl, and Shc, and association of these proteins with p85. InlB also stimulated large scale changes in the actin cytoskeleton (membrane ruffling), which were PI 3-kinase-dependent. These results identify InlB as the first reported non-mammalian agonist of PI 3-kinase and demonstrate similarities in the signal transduction events elicited by this bacterial protein and known agonists such as epidermal growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号