首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogen exchange kinetics of Kunitz soybean trypsin inhibitor (STI) has been studied at pH 2, 3, and 6.5. From the temperature dependence of proton exchange at low pH, THE CONTRIBUTION OF MAJOR, REVERSIBLE PROTEIN UNFOLDING To the hydrogen exchange kinetics has been determined. Exchange directly from the folded conformation is characterized by an apparent activation energy (E*app) of approximately 25 kcal/mol, close to that of the chemical exchange step. At pH 6.5 the protein is more temperature stable than at low pH, and exchange of all but congruent to 8 protons can be observed to exchange with E*app congruent to 27 kcal/mol. This implies that all but congruent to 8 protons are accessible to exchange with solvent in the solution structure of folded STI. Estimates can be made of the average number of water molecules per molecule of STI consistent with a solvent accessibility model of hydrogen exchange kinetics. These estimates indicate that very few water molecules within the protein matrix are necessary to explain the exchange data. Calculations are done for the STI hydrogen exchange kinetics at pH 3, 30 degrees, approximating STI structure by a sphere of radius = 18 A. These calculations indicate an average of congruent to 4 water molecules in the shell from 13 to 16 A. from the center of the molecule, while less than 1 water molecule is indicated in the innermost 13 A. These calculations also suggest that there are congruent to 190 water molecules associated with the outermost 1.5-2 A of the sphere. While these values are consistent with a hydrophobic region in the central protein matrix, they indicate more solvent accessibility in the outer 1/3 of the molecule than the static accessibility estimates made from X-ray coordinates. Our results suggest that any protein movements or fluctuations responsible for solvent accessibility in proton exchange processes are localized in the outer regions of the globular structure.  相似文献   

2.
The exchange kinetics of the slowest exchanging BPTI beta-sheet protons are complex compared to model peptides; the activation energy, E alpha, and the pH dependence are temperature dependent. We have measured the exchange kinetics in the range pH 1--11, 33--71 degrees C, particularly the temperature dependence. The data are fit to a model in which exchange of each proton is determined by two discrete dynamical processes, one with E alpha approximately 65 kcal/mol and less than first order dependence on catalyst ion, and one with E alpha 20--30 kcal/mol and approaching first order in catalyst ion. The low activation energy process is the mechanism of interest in the native conformation of globular proteins and involves low energy, small amplitude fluctuations; the high activation energy process involves major unfolding. The model is simple, has a precedent in the hydrogen exchange literature, and explains quantitatively the complex feature of the exchange kinetics of single protons in BPTI, including the following. For the slowest exchanging protons, in the range 36 degrees--68 degrees C, E alpha is approximately 65 kcal/mol at pH approximately 4, 20--30 kcal/mol at pH greater than 10, and rises to approximately 65 kcal/mol with increasing temperature at pH 6--10; the Arrhenius plots converge around 70 degrees C; the pH of minimum rate, pHmin, is greater than 1 pH unit higher at 68 degrees C than for model compounds; and at high pH, the pH-rate profiles shift to steeper slope; the exchange rates around pHmin are correlated to the thermal unfolding temperature in BPTI derivatives (Wagner and Wüthrich, 1979, J. Mol. Biol. 130:31). For the more rapidly exchanging protons in BPTI the model accounts for the observation of normal pHmin and E alpha of 20--30 kcal/mol at all pH's. The important results of our analysis are (a) rates for exchange from the folded state of proteins are not correlated to thermal lability, as proposed by Wuthrich et al. (1979, J. Mol. Biol. 134:75); (b) the unfolding rate for the BPTI cooperative thermal transition is equal to the observed exchange rates of the slowest exchanging protons between pH 8.4--9.6, 51 degrees C; (c) the rates for exchange of single protons from folded BPTI are consistent with our previous hydrogen-tritium exchange results and with a penetration model of the dynamic processes limiting hydrogen exchange.  相似文献   

3.
Chi YH  Kumar TK  Kathir KM  Lin DH  Zhu G  Chiu IM  Yu C 《Biochemistry》2002,41(51):15350-15359
The conformational stability of the human acidic fibroblast growth factor (hFGF-1) is investigated using amide proton exchange and temperature-dependent chemical shifts, monitored by two-dimensional NMR spectroscopy. The change in free energy of unfolding (DeltaG(u)) of hFGF-1 is estimated to be 5.00 +/- 0.09 kcal.mol(-)(1). Amide proton-exchange rates of 74 residues (in hFGF-1) have been unambiguously measured, and the exchange process occurs predominately according to the conditions of the EX2 limit. The exchange rates of the fast-exchanging amide protons exposed to the solvent have been measured using the clean SEA-HSQC technique. The amide proton protection factor and temperature coefficient estimates show reasonably good correlation. Residues in beta-strands II and VI appear to constitute the stability core of the protein. Among the 12 beta-strands constituting the beta-barrel architecture of hFGF-1, beta-strand XI, located in the heparin binding domain, exhibits the lowest average protection factor value. Amide protons involved in the putative folding nucleation site in hFGF-1, identified by quench-flow NMR studies, do not represent the slow-exchanging core. Residues in portions of hFGF-1 experiencing high conformational flexibility mostly correspond to those involved in receptor recognition and binding.  相似文献   

4.
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10 degrees C by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG=2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding rate of less than 4 min(-1) measured by stopped-flow circular dichroism. The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E.coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding.  相似文献   

5.
Y Pan  M S Briggs 《Biochemistry》1992,31(46):11405-11412
Ubiquitin adopts a non-native folded structure in 60% methanol solution at low pH. Two-dimensional nuclear magnetic resonance (2D NMR) was used to measure the hydrogen-exchange rates of backbone amide protons of ubiquitin in both native and methanol forms, and to characterize the structure of ubiquitin in the methanol state. Protection factors (the ratios of experimentally determined exchange rates to the rates calculated for an unfolded polypeptide) for protons in the native form of ubiquitin range from less than 10 to greater than 10(5). Most of the protons that are protected from exchange are located in regions of hydrogen-bonded secondary structure. The most strongly protected backbone amide protons are those of residues comprising the hydrophobic core. Hydrogen exchange from ubiquitin in methanol solution was too rapid to measure directly by 2D NMR, so a labeling scheme was employed, in which exchange with solvent occurred while the protein was in methanol solution. Exchange was quenched by dilution with aqueous buffer after the desired labeling time, and proton occupancies were measured by 1H NMR of the native form of the protein. Protection factors for protons in the methanol form of ubiquitin range from 2.6 to 42, with all protected protons located in hydrogen-bonded structure in the native form. Again, the most strongly protected protons are those of residues in the hydrophobic core. Comparison of the patterns of the hydrogen-exchange rates in the native and methanol forms indicates that almost all of the native secondary structure persists in the methanol form, but that it is almost uniformly destabilized by 4-6 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The pH dependence of hydrogen exchange in proteins   总被引:3,自引:0,他引:3  
The static accessibility modified discrete charge model for electrostatic interactions in proteins is extended to the prediction of the pH dependence of hydrogen exchange reactions. The exchange rate profiles of buried amide protons are shown to follow the calculated pH dependence of the electrostatic component of protein stability. Rate profiles are calculated for individual buried amide protons in ribonuclease S and bovine pancreatic trypsin inhibitor. The electrostatic free energy of stabilization of the protein and the energy required to bring the catalytic ion to an exchange site are expressed as an apparent, pH-dependent contribution to the activation energy. Changes in the electrostatic stabilization of the proteins affect the calculated exchange rate for buried amide protons by more than 1000, while local field effects raise or lower the predicted exchange rates by less than 100. The pH dependence of exchangeable protons at the protein surface, such as the C-2 imidazole protons, is shown to follow the estimated energy required to introduce the catalytic ion at the exchange site. These calculations are discussed in terms of current models for proton exchange which incorporate the dynamic nature of the structure to explain exchange data from the interior of a protein.  相似文献   

7.
The backbone dynamics of the EF-hand Ca(2+)-binding protein, calbindin D9k, has been investigated in the apo, (Cd2+)1 and (Ca2+)2 states by measuring the rate constants for amide proton exchange with solvent. 15N-1H correlation spectroscopy was utilized to follow direct 1H-->2H exchange of the slowly exchanging amide protons and to follow indirect proton exchange via saturation transfer from water to the rapidly exchanging amide protons. Plots of experimental rate constants versus intrinsic rate constants have been analyzed to give qualitative insight into the opening modes of the protein that lead to exchange. These results have been interpreted within the context of a progressive unfolding model, wherein hydrophobic interactions and metal chelation serve to anchor portions of the protein, thereby damping fluctuations and retarding amide proton exchange. The addition of Ca2+ or Cd2+ was found to retard the exchange of many amide protons observed to be in hydrogen-bonding environments in the crystal structure of the (Ca2+)2 state, but not of those amide protons that were not involved in hydrogen bonds. The largest changes in rate constant occur for residues in the ion-binding loops, with substantial effects also found for the adjacent residues in helices I, II and III, but not helix IV. The results are consistent with a reorganization of the hydrogen-bonding networks in the metal ion-binding loops, accompanied by a change in the conformation of helix IV, as metal ions are chelated. Further analysis of the results obtained for the three states of metal occupancy provides insight into the nature of the changes in conformational fluctuations induced by ion binding.  相似文献   

8.
C Baldellon  A Padilla  A Cavé 《Biochimie》1992,74(9-10):837-844
The amide proton exchange rates have been measured for the pike parvalbumin loaded either with calcium (PaCa2) or with magnesium (PaMg2) by using 2-D total correlation spectroscopy experiments. The differences in the exchange rates observed between these two species were unexpected when compared with the small conformational changes induced in parvalbumin by the Ca/Mg exchange. With the calcium-loaded protein (PaCa2), a significant difference was observed for the amide proton exchange rates of residues located in the N-terminal domain AB in contrast to the slower exchange rates that were observed in the CD and EF domains. Such a difference does not exist for PaMg2, where faster exchange rates are observed over all the sequence. Since amide proton exchange rates are the signature of the solvent's accessibility in proteins, we interpreted our results in terms of difference of the equilibria between 'closed-states' and 'opened-states' for individual amide protons of the protein when calcium was replaced by magnesium. The CD and EF domains, and to a lesser extent the AB domain, would be more rigid when the protein was loaded with calcium ions. For the magnesium-loaded parvalbumin (PaMg2) the faster exchange rates we observed could be rationalized by a more flexible structure than in the case of the PaCa2.  相似文献   

9.
Recent x-ray crystallographic studies of the acetylcholine-binding protein (AChBP) suggest that loop C, found at the circumference of the pentameric molecule, shows distinctive conformational changes upon antagonist and agonist occupation. We have employed hydrogen-deuterium exchange mass spectrometry to examine the influence of bound ligands on solvent exposure of AChBP. Quantitative measurements of deuterium incorporation are possible for approximately 56% of the Lymnaea AChBP sequence, covering primarily the outer surface of AChBP. In the apoprotein, two regions flanking the ligand occupation site at the subunit interface, loop C (residues 175-193) and loop F (residues 164-171), show greater extents of solvent exchange than other regions of the protein including the N- and C-terminal regions. Occupation by nicotinic agonists, epibatidine and lobeline, and nicotinic antagonists, methyllycaconitine, alpha-bungarotoxin, and alpha-cobratoxin, markedly restricts the exchange of loop C amide protons, influencing both the rates and degrees of exchange. Solvent exposure of loop C and its protection by ligand suggest that in the apoprotein, loop C exhibits rapid fluctuations in an open conformation. Bound agonists restrict solvent exposure through loop closure, whereas the larger antagonists restrict solvent exposure largely through occlusion of solvent. Loop F, found on the complementary subunit surface at the interface, also reveals ligand selective changes in amide proton exchange rates. Agonists do not affect solvent accessibility of loop F, whereas certain antagonists cause subtle accessibility changes. These results reveal dynamic states and fluctuating movements in the vicinity of the binding site for unligated AChBP that can be influenced selectively by ligands.  相似文献   

10.
Hydrogen exchange kinetics in native solvent conditions have been used to explore the conformational fluctuations of an immunoglobulin domain (CD2.domain1). The global folding/unfolding kinetics of the protein are unaltered between pH 4.5 and pH 9.5, allowing us to use the pH-dependence of amide hydrogen/deuterium exchange to characterise conformational states with energies up to 7.2kcal/mol higher than the folded ground state. The study was intended to search for discreet unfolding intermediates in this region of the energy spectrum, their presence being revealed by the concerted exchange behaviour of subsets of amide groups that become accessible at a given free energy, i.e. the spectrum would contain discreet groupings. Protection factors for 58 amide groups were measured across the pH range and the hydrogen-exchange energy profile is described.More interestingly, exchange behaviour could be grouped into three categories; the first two unremarkable, the third unexpected. (1) In 33 cases, amide exchange was dominated by rapid fluctuation, i.e. the free energy difference between the ground state and the rapidly accessed open state is sufficiently low that the contribution from crossing the unfolding barrier is negligible. (2) In 18 cases exchange is dominated by the global folding transition barrier across the whole pH range measured. The relationship between hydroxyl ion concentration and observed exchange rate is hyperbolic, with the limiting rate being that for global unfolding; the so-called EX1 limit. For these, the free energy difference between the folded ground state and any rapidly-accessed open state is too great for the proton to be exchanged through such fluctuations, even at the highest pH employed in this study. (3) For the third group, comprising five cases, we observe a behaviour that has not been described. In this group, as in category 2, the rate of exchange reaches a plateau; the EX1 limit. However, as the intrinsic exchange rate (k(int)) is increased, this limit is breached and the rate begins to rise again. This unintuitive behaviour does not result from pH instability, rather it is a consequence of amide groups experiencing two processes; rapid fluctuation of structure and crossing the global barrier for unfolding. The boundary at which the EX1 limit is overcome is determined by the equilibrium distribution of the fluctuating open and closed states (K(O/C)) and the rate constant for unfolding (k(u)). This critical boundary is reached when k(int)K(O/C)=k(u). Given that, in a simple transition state formalism: k(u)=K(#)k' (where K(#) describes the equilibrium distribution between the transition and ground state and k' describes the rate of a barrierless rearrangement), it follows that if the pH is raised to a level where k(int)=k', then the entire free energy spectrum from ground state to transition state could be sampled.  相似文献   

11.
The pH dependence of amide proton exchange rates have been measured for trp-repressor. One class of protons exchanges too fast to be measured in these experiments. Among the protons that have measurable hydrogen-deuterium exchange rates, two additional classes may be distinguished. The second class of protons are in elements of secondary structure that are mostly on the surface of the protein, and exchange linearly with increasing base concentration (log kex versus pH). The third class of amide protons is characterized by much higher protection against exchange at higher pH. These protons are located in the core of the protein, in helices B and C. The exchange rate in the core region does not increase linearly with pH, but rather goes through a minimum around pH 6. The mechanism of exchange for the slowly exchanging core protons is interpreted in terms of the two-process model of Hilton and Woodward (1979, Biochemistry 18:5834-5841), i.e., exchange through both a local mechanism that does not require unfolding of the protein, and a mechanism involving global unfolding of the protein. The increase in exchange rates at low pH is attributed to a partial unfolding of the repressor. It is concluded that the formation of secondary structure alone is insufficient to account for the high protection factors seen in the core of native proteins at higher pH, and that tertiary interactions are essential to stabilize the structure.  相似文献   

12.
Jin X  Zhang J  Dai H  Sun H  Wang D  Wu J  Shi Y 《Biophysical chemistry》2007,129(2-3):269-278
The solution structure of human MICAL-1 calpolnin homology (CH) domain is composed of six alpha helices and one 3(10) helix. To study the unfolding of this domain, we carry out native-state hydrogen exchange, intrinsic fluorescence and far-UV circular dichroism experiments. The free energy of unfolding, DeltaG(H2O), is calculated to be 7.11+/-0.58 kcal mol(-1) from GuHCl denaturation at pH 6.5. Four cooperative unfolding units are found using native-state hydrogen exchange experiment. Forty-seven slow-exchange residues can be studied by native-state hydrogen exchange experiments. From the concentration dependence of exchange rates, free energy of amide hydrogen with solvent, DeltaG(HX) and m-value (sensitivity of exposure to denaturant) are obtained, which reveal four cooperative unfolding units. The slowest exchanging protons are distributed throughout the whole hydrophobic core of the protein, which might be the folding core. These results will help us understand the structure of MICAL-1 CH domain more deeply.  相似文献   

13.
The effects of ethanol, ethylene glycol, dioxane, and other organic co-solvents upon the hydrogen exchange rates of randomly coiled oxidized RNase, native RNase, and native trypsin have been measured. The exchange rate of oxidized RNase, the model compound for the proton transfer step in hydrogen exchange, is decreased by all of the co-solvents studied at temperatures in the range 3-20 degrees. This has been ascribed to the combined effects of the disruption of peptide bond solvation due to a reduction in the concentration of water, and of changes in [OH-] ion concentration due to changes in the acid dissociation constant of water, Kw. The solvent dependence for both native RNase and native trypsin is similar in all of the solvents studied. At a low temperature (3-20 degrees), the exchange rates go through a minimum as the solvent concentration is increased. At higher temperatures (20-35 degrees) the exchange rates are increased at all concentrations of the co-solvent. The apparent rate minimum at lower temperatures is due to two opposing effects. Co-solvents decrease the rate of exchange that occurs directly from the folded molecule. At higher concentrations and higer temperature. The decrease in rates for exchange directly from folded protein is primarily due to the effects on the proton transfer step, and not to binding or the solvent effects on protein structure. The solvents used in this study have no apparent effect on conformational processes contributing to the hydrogen exchange process in folded proteins.  相似文献   

14.
We develop a statistical mechanical theory for the mechanism of hydrogen exchange in globular proteins. Using the HP lattice model, we explore how the solvent accessibilities of chain monomers vary as proteins fluctuate from their stable native conformations. The model explains why hydrogen exchange appears to involve two mechanisms under different conditions of protein stability; (1) a “global unfolding” mechanism by which all protons exchange at a similar rate, approaching that of the denatured protein, and (2) a “stable-state” mechanism by which protons exchange at rates that can differ by many orders of magnitude. There has been some controversy about the stable-state mechanism: does exchange take place inside the protein by solvent penetration, or outside the protein by the local unfolding of a subregion? The present model indicates that the stable-state mechanism of exchange occurs through an ensemble of conformations, some of which may bear very little resemblance to the native structure. Although most fluctuations are small-amplitude motions involving solvent penetration or local unfolding, other fluctuations (the conformational distant relatives) can involve much larger transient excursions to completely different chain folds.  相似文献   

15.
The influence of glycerol on hydrogen isotope exchange in lysozyme   总被引:1,自引:0,他引:1  
R B Gregory 《Biopolymers》1988,27(11):1699-1709
Hydrogen isotope exchange rates for lysozyme in glycerol cosolvent mixtures [D. G. Knox and A. Rosenberg (1980) Biopolymers 19 , 1049–1068] have been analyzed as functions of solvent viscosity and glycerol activity in an attempt to determine which solvent properties influence protein internal dynamics. The effect of glycerol on the fast- and slow-exchanging protons is different. Slow-exchanging protons [H(t) < 20] are slowed by ever-increasing amounts as H(t) decreases. However, comparison with data for the effect of glycerol on the thermal unfolding of lysozyme [K. Gekko (1982) J. Biochem. 19 , 1197–1204] indicates that the large decrease in exchange rates for the slow protons is not consistent with a local unfolding mechanism of exchange. These effects are also too large to be easily rationalized in terms of solvent viscosity. Instead, we suggest that the large effect of glycerol on exchange of the slow protons is due to a “compression” of the protein, as a result of thermodynamically unfavorable interactions of glycerol with the protein surface. This reduces the protein void volume, which in turn decreases the probability of conformational transitions required for exchange of the slowest protons. Present data do not allow a distinction to be made between thermodynamic (glycerol activity) and dynamic (solvent viscosity) influences on exchange rates for the fast-exchanging protons, although the effect of glycerol on these protons is also probably too large to be consistent with a local unfolding mechanism. In this case, glycerol decreases the rate of catalyst diffusion within the protein matrix, either by decreasing the probabilities or amplitudes of “gating” reactions that allow passage of the catalyst from the solvent to the exchange site, or by increasing the relaxation times for these conformational rearrangements.  相似文献   

16.
Experiments were carried out to measure the effect of concentrations of glycerol on H-exchange (HX) rates by using myoglobin as a test protein. Concentrated glycerol has only a small slowing effect on the HX kinetics of freely exposed amides, studied in a small molecule model (acetamide). Larger effects occur in structured proteins. The effect of solvent glycerol on different parts of the HX curve of myoglobin was studied by use of a selective "kinetic labeling" approach. Concentrated glycerol exerts an apparently reverse effect on protein H exchange; the faster exchanging "surface" protons are least affected, while the slower and slower amide NH is further slowed by larger and larger factors. These results seem inconsistent with solvent penetration models which generally visualize slower and slower protons as being placed, and undergoing exchange, farther and farther from the solvent-protein interface. On the other hand, the results are as expected for the local unfolding model for protein H exchange since concentrated glycerol is known to stabilize proteins against unfolding. In the local unfolding model, slower exchanging protons are released by way of higher energy and therefore generally larger, unfolding reactions. Larger unfoldings must be more inhibited by the glycerol effect.  相似文献   

17.
From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 degrees C, 30 degrees C, and 40 degrees C for a tightly bound 15N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads.  相似文献   

18.
Identification of an allosterically sensitive unfolding unit in hemoglobin   总被引:2,自引:0,他引:2  
Hydrogen-exchange studies locate a set of seven allosterically sensitive amide NH protons side by side around two turns of the F-FG helical segment in the hemoglobin beta chain. Some of these protons are on the aqueous protein surface and some deeply inside, yet they all exchange with solvent protons at similar rates. Further, they move in unison to a new common rate when hemoglobin changes its allosteric form. These observations and analogous results for other proteins appear to be inconsistent with penetration-dependent models which relate H-exchange rate to solvent accessibility in the native state. Rather, these results point to sizeable fluctuational distortions that make small sets of protons more or less equally accessible in some transient H-exchange transition state, as visualized in the local unfolding model. The set of allosterically sensitive protons studied here exchanges 30-fold faster in liganded hemoglobin than in the deoxy form. In terms of the unfolding model, this means that the F-FG structure is relatively destabilized in oxyhemoglobin, so that the allosterically linked change in structural free energy at F-FG favors the deoxy state. The 30-fold change in H-exchange rate suggests a contribution to the allosteric free energy by this segment of 2 kcal (1 cal = 4.184 J). These experiments utilized a labeling technique, described earlier, that selectively places tritium on sites whose H-exchange rates are sensitive to the protein functional state, and used a method introduced by Rosa & Richards (1979,1981) to locate this label in the protein. The latter method, which rapidly separates protein fragments under conditions that can preserve exchangeable label, was here brought to a more quantitative level. Taken together, these techniques provide a "functional labeling" method capable of selectively labeling and identifying protein segments that participate in functional interactions.  相似文献   

19.
Native state hydrogen exchange of cold shock protein A (CspA) has been characterized as a function of the denaturant urea and of the stabilizing agent trimethylamine N-oxide (TMAO). The structure of CspA has five strands of beta-sheet. Strands beta1-beta4 have strongly protected amide protons that, based on experiments as a function of urea, exchange through a simple all-or-none global unfolding mechanism. By contrast, the protection of amide protons from strand beta5 is too weak to measure in water. Strand beta5 is hydrogen bonded to strands beta3 and beta4, both of which afford strong protection from solvent exchange. Gaussian network model (GNM) simulations, which assume that the degree of protection depends on tertiary contact density in the native structure, accurately predict the strong protection observed in strands beta1-beta4 but fail to account for the weak protection in strand beta5. The most conspicuous feature of strand beta5 is its low sequence hydrophobicity. In the presence of TMAO, there is an increase in the protection of strands beta1-beta4, and protection extends to amide protons in more hydrophilic segments of the protein, including strand beta5 and the loops connecting the beta-strands. TMAO stabilizes proteins by raising the free energy of the denatured state, due to highly unfavorable interactions between TMAO and the exposed peptide backbone. As such, the stabilizing effects of TMAO are expected to be relatively independent of sequence hydrophobicity. The present results suggest that the magnitude of solvent exchange protection depends more on solvent accessibility in the ensemble of exchange susceptible conformations than on the strength of hydrogen-bonding interactions in the native structure.  相似文献   

20.
A procedure to measure exchange rates of fast exchanging protein amide hydrogens by time-resolved NMR spectroscopy following in situ initiation of the reaction by diluting a native protein solution into an exchanging deuterated buffer is described. The method has been used to measure exchange rates of a small set of amide hydrogens of reduced cytochrome c, maintained in a strictly anaerobic atmosphere, in the presence of an otherwise inaccessible range of guanidinium deuterochloride concentrations. The results for the measured protons indicate that hydrogen exchange in the unfolding transition region of cytochrome c reach the EX2 limit, but emphasize the difficulty in interpretation of the exchange mechanism in protein hydrogen exchange studies. Comparison of free energies of structure opening for the measured hydrogens with the global unfolding free energy monitored by far-UV CD measurements has indicated the presence of at least one partially unfolded equilibrium species of reduced cytochrome c. The results provide the first report of measurement of free energy of opening of structure to exchange in the 0–2-kcal/mol range. Proteins 32:241–247, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号