首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High osmolarity in the culture medium of growing Agrobacterium tumefaciens strongly inhibited the accumulation of cellular beta(1-2) glucan. However, the enzymatic system required for the synthesis of this polysaccharide from UDP-glucose was not repressed by high osmolarity. Mutants of A. tumefaciens and Rhizobium meliloti affected in beta(1-2) glucan synthesis were unable to grow normally in low-osmolarity media.  相似文献   

2.
Gibberellic acid (GA) stimulated both the elongation of Avena sativa stem segments and increased synthesis of cell wall material. The effects of GA on glucose metabolism, as related to cell wall synthesis, have been investigated in order to find specific events regulated by GA. GA caused a decline in the levels of glucose, glucose 6-phosphate, and fructose 6-phosphate if exogenous sugar was not supplied to the segments, whereas the hormone caused no change in the levels of glucose 6-phosphate, fructose 6-phosphate, UDP-glucose, or the adenylate energy charge if the segments were incubated in 0.1 m glucose. No GA-induced change could be demonstrated in the activities of hexokinase, phosphoglucomutase, UDP-glucose pyrophosphorylase, or polysaccharide synthetases using UDP-glucose, UDP-galactose, UDP-xylose, and UDP-arabinose as substrates. GA stimulated the activity of GDP-glucose-dependent β-glucan synthetase by 2- to 4-fold over the control. When glucan synthetase was assayed using UDP-glucose as substrate, only β-1,3-linked glucan was synthesized in vitro, whereas with GDP-glucose, only β-1,4-linked glucan was synthesized. These results suggest that one part of the mechanism by which GA stimulates cell wall synthesis concurrently with elongation in Avena stem segments may be through a stimulation of cell wall polysaccharide synthetase activity.  相似文献   

3.
Inner membranes of Azospirillum brasilense incubated with UDP-glucose were unable to synthesize beta-(1-2) glucan and lacked the 235-kilodalton intermediate protein known to be involved in the synthesis of beta-(1-2) glucan in Agrobacterium tumefaciens and Rhizobium meliloti. Inner membranes of A. brasilense strains carrying a cosmid containing the chromosomal virulence genes chvA and chvB of Agrobacterium tumefaciens formed beta-(1-2) glucan in vitro and synthesized the 235-kilodalton intermediate protein. No DNA homology to the chvB region was found in different wild-type strains of A. brasilense, but the introduction of a cosmid containing the Agrobacterium tumefaciens chvA and chvB regions yielded strains in which DNA hybridization with the chvB region was detected, provided that the strains were grown under an antibiotic selective pressure.  相似文献   

4.
Mutant cells of mucoid Pseudomonas aeruginosa isolated from cystic fibrosis patients were examined for their ability to synthesize alginic acid in resting cell suspensions. Unlike the wild-type strain which synthesizes alginic acid from glycerol, fructose, mannitol, glucose, gluconate, glutamate, or succinate, mutants lacking specific enzymes of carbohydrate metabolism are uniquely impaired. A phosphoglucose isomerase mutant did not synthesize the polysaccharide from mannitol, nor did a glucose 6-phosphate dehydrogenase mutant synthesize the polysaccharide from mannitol or glucose. Mutants lacking the Entner-Doudoroff pathway dehydrase or aldolase failed to produce alginate from mannitol, glucose, or gluconate, as a 3-phosphoglycerate kinase or glyceraldehyde 3-phosphate dehydrogenase mutant failed to produce from glutamate or succinate. These results demonstrate the primary role of the Entner-Doudoroff pathway enzymes in the synthesis of alginate from glucose, mannitol, or gluconate and the role of glyceraldehyde 3-phosphate dehydrogenase reaction for the synthesis from gluconeogenic precursors such as glutamate. The virtual absence of any activity of phosphomannose isomerase in cell extracts of several independent mucoid bacteria and the impairment of alginate synthesis from mannitol in mutants lacking phosphoglucose isomerase or glucose 6-phosphate dehydrogenase rule out free mannose 6-phosphate as an intermediate in alginate biosynthesis.  相似文献   

5.
Mutants of Rhizobium meliloti SU47 with defects in the production of the Calcofluor-binding expolysaccharide succinoglycan failed to gain entry into alfalfa root nodules. In order to define better the polysaccharide phenotypes of these exo mutants, we analyzed the periplasmic oligosaccharide cyclic (1-2)-beta-D-glucan and lipopolysaccharide (LPS) in representative mutants. The exoC mutant lacked the glucan and had abnormal LPS which appeared to lack a substantial portion of the O side chain. The exoB mutant had a spectrum of LPS species which differed from those of both the wild-type parental strain and the exoC mutant. The presence of the glucan and normal LPS in the exoA, exoD, exoF, and exoH mutants eliminated defects in these carbohydrates as explanations for the nodule entry defects of these mutants. We also assayed for high- and low-molecular-weight succinoglycans. All of the exo mutants except exoD and exoH completely lacked both forms. For the Calcofluor-dim exoD mutant, the distribution of high- and low-molecular-weight forms depended on the growth medium. The haloless exoH mutant produced high-molecular-weight and only a trace of low-molecular-weight succinoglycan; the succinyl modification was missing, as was expected from the results of previous studies. The implications of these observations with regard to nodule entry are discussed.  相似文献   

6.
Intermediatry steps in cellulose synthesis in Acetobacter xylinum were studied with resting cells and particulate-membranous preparations of the wild-type strain and of a celluloseless mutant. Exogenously supplied [1-14C]glucose was rapidly converted by resting cells of both types into glucose 6-phosphate, glucose 1-phosphate, and uridine glucose 5'-diphosphate (UDP)-glucose and incorporated into lipid-, water-, and alkali-soluble cellular fractions. The decrease in the level of labeled hexose-phosphates and UDP-glucose upon depletion of the exogenous substrate was accounted for by a continuous incorporation of [14C]glucose into cellulose in the wild type and into the above-mentioned cellular components in the mutant. [14C]glucose retained in the alkali- and water-soluble fractions of pulse-labeled wild-type cells was quantitatively chased into cellulose. Sonic extracts of both strains catalyzed the transfer of glucose from UDP-glucose into lipid-, water-, and alkali-soluble materials, as well as into an alkali-insoluble cellulosic beta-1,4-glucan. The results strongly support the sequence glucose leads to glucose 6-phosphate leads to glucose 1-phosphate leads to UDP-glucose leads to cellulose and indicate that lipid- and protein-linked cellodextrins may function as intermediates between UDP-glucose and cellulose in A. xylinum.  相似文献   

7.
Cyclic beta-(1,2)-glucans are synthesized by members of the Rhizobiaceae family through protein-linked oligosaccharides as intermediates. The protein moiety is a large inner membrane molecule of about 319 kDa. In Agrobacterium tumefaciens and in Rhizobium meliloti the protein is termed ChvB and NdvB, respectively. Inner membranes of R. meliloti 102F34 and A. tumefaciens A348 were first incubated with UDP-[14C]Glc and then solubilized with Triton X-100 and analyzed by polyacrylamide gel electrophoresis under native conditions. A radioactive band corresponding to the 319-kDa protein was detected in both bacteria. Triton-solubilized inner membranes of A. tumefaciens were submitted to native electrophoresis and then assayed for oligosaccharide-protein intermediate formation in situ by incubating the gel with UDP-[14C]Glc. A [14C]glucose-labeled protein with an electrophoretic mobility identical to that corresponding to the 319-kDa [14C]glucan protein intermediate was detected. In addition, protein-linked radioactivity was partially chased when the gel was incubated with unlabeled UDP-Glc. A heterogeneous family of cyclic beta-(1,2)-glucans was formed upon incubation of the gel portion containing the 319-kDa protein intermediate with UDP-[14C]Glc. A protein with an electrophoretic behavior similar to the 319-kDa protein intermediate was "in gel" labeled by using Triton-solubilized inner membranes of an A. tumefaciens exoC mutant, which contains a protein intermediate without nascent glucan. These results indicate that initiation (protein glucosylation), elongation, and cyclization were catalyzed in situ. Therefore, the three enzymatic activities detected in situ reside in a unique protein component (i.e., cyclic beta-(1,2)-glucan synthase). It is suggested that the protein component is the 319-kDa protein intermediate, which might catalyze the overall cyclic beta-(1,2)-glucan synthesis.  相似文献   

8.
1. The activity of a particulate enzyme prepared from encysting cells of Acanthamoeba castellanii (Neff), previously shown to catalyze the incorporation of glucose from UDP-[14C]glucose into both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans, was stimulated several fold by glucose-6-phosphate and several related compounds. 2. Incorporation was observed when [14C]glucose-6-P was incubated with the particles in the presence of UDP-glucose. The results of product analysis by partial acid hydrolysis indicated that glucose-6-P stimulates the formation of both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans from UDP-[14C]glucose and was itself incorporated into an alkali-insoluble beta-(1 leads to 4)glucan. 3. When particles incubated with UDP-[14C]glucose and glucose-6-P were reisolated and then reincubated with unlabeled UDP-glucose and glucose-6-P, a loss of counts from the alkali-soluble fraction was detected along with a corresponding rise in the radioactivity of the alkali-insoluble fraction. This suggests that the alkali-soluble beta-glucan was converted to an alkali-insoluble product and possibly may be an intermediate stage in cellulose synthesis.  相似文献   

9.
Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.  相似文献   

10.
Disruption of the gene pgil of Saccharomyces cerevisiae, which codes for phosphoglucose isomerase, results in a dramatic increase in the amount of intracellular glycogen in early exponential cultures. The level of glucose 6-phosphate was much higher in mutant than in wild-type cells. Phosphorylase a activity and the state of activation of glycogen synthase were also investigated. Phosphorylase a activity was rather low along the culture in wild-type cells, whereas it was consistently higher in mutants. Glycogen synthase was mostly in the active form in early-medium exponential cultures in wild-type cells whereas the activation state of this enzyme in mutant cells, although lower at the earlier steps of the culture, did not differ from wild-type cells at later stages. The fact that the intracellular levels of UDP-glucose are markedly increased in mutant cells suggest that the observed accumulation of glycogen results from a rise in substrate availability rather than from the activation of the enzyme responsible for the synthesis of the polysaccharide.  相似文献   

11.
The chvA gene product of Agrobacterium tumefaciens is required for virulence and attachment of bacteria to plant cells. Three chvA mutants were studied. In vivo, they were defective in the synthesis, accumulation, and secretion of beta-(1-2)glucan; however, the 235-kilodalton (kDa) protein known to be involved in the synthesis of beta-(1-2)glucan (A. Zorreguieta and R. Ugalde, J. Bacteriol. 167:947-951, 1986) was present and active in vitro. was present and active in vitro. Two molecular forms of cyclic beta-(1-2)glucan, designated types I and II, were resolved by gel chromatography. Type I beta-(1-2)glucan was substituted with nonglycosidic residues, and type II beta-(1-2)glucan was nonsubstituted. Wild-type cells accumulated type I beta-(1-2)glucan, and chvA mutant cells accumulated mainly type II beta-(1-2)glucan and a small amount of type I beta-(1-2)glucan. Inner membranes of wild-type and chvA mutants formed in vitro type II nonsubstituted beta-(1-2)glucan. A 75-kDa inner membrane protein is proposed to be the chvA gene product. chvA mutant inner membranes had increased levels of 235-kDa protein; partial trypsin digestion patterns suggested that the 235-kDa protein (the gene product of the chvB region) and the gene product of the chvA region form a complex in the inner membrane that is involved in the synthesis, secretion, and modification of beta-(1-2)glucan. All of the defects assigned to the chvA mutation were restored after complementation with plasmid pCD522 containing the entire chvA region.  相似文献   

12.
ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 A, b = 93.79 A, and c = 140.29 A (alpha = beta = gamma = 90 degrees ) and space group I 222. The A. tumefaciens ADPGlc PPase model was refined to 2.1 A with an R factor = 22% and R free = 26.6%. The model consists of two domains: an N-terminal alphabetaalpha sandwich and a C-terminal parallel beta-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.  相似文献   

13.
Production of exopolysaccharides by Rhizobium has been linked with efficient invasion and nodulation of leguminous plant roots by the bacteria. Exopolysaccharide-deficient (exo) mutants of Rhizobium fredii USDA 191 were isolated following Tn5-insertion mutagenesis. Five phenotypically unique exo mutants were investigated for exopolysaccharide synthesis and their ability to nodulate soybeans. The exopolysaccharides produced by these mutants were analysed for polysaccharide composition by column chromatography and thin-layer chromatography. Two mutants designed exo-3 and exo-5 were deficient in both neutral glucan and exopolysaccharide synthesis, but each induced some functional nodules on Glycine max (Peking). The remaining three mutants (exo-1, exo-2 and exo-4) synthesized neutral glucans at levels higher or lower than those in wild-type and exhibited partial exopolysaccharide deficiencies. The data imply that neither exopolysaccharides nor neutral glucans are essential for the induction of determinate nodules by R. fredii.  相似文献   

14.
Smith TL  Rutter J 《Molecular cell》2007,26(4):491-499
The ability of cells to recognize and respond to specific metabolic deficiencies is required for all forms of life. We have uncovered a system in the yeast S. cerevisiae that, in response to a perceived deficiency in cell wall glucan, alters partitioning of glucose toward glucan synthesis and away from glycogen synthesis. The paralogous yeast PAS kinases Psk1 and Psk2 phosphorylate UDP-glucose pyrophosphorylase (Ugp1), the primary producer of UDP-glucose, the glucose donor for glucan biosynthesis. Unexpectedly, phosphorylation of Ugp1 does not affect its catalytic activity but instead alters the terminal destination of the UDP-glucose it generates. Phosphorylated Ugp1 is required for intensive glucan production, and inability to phosphorylate Ugp1 is associated with a weak cell wall, decreased glucan content, and increased glycogen content. We provide data indicating that phosphorylation by Psk1 or Psk2 targets Ugp1 to the cell periphery, where the UDP-glucose it produces is in proximity to the site of glucan synthesis. We propose that regulation of glucose partitioning by altered enzyme and substrate localization is a rapid and potent response to metabolic deficiency.  相似文献   

15.
The synthesis of the major linkage found in yeast cell wall structural polysaccharides, glucosyl-beta-(1 leads to 3)-glucosyl, was studied with a membrane preparation from Saccharomyces cerevisiae. The sugar donor was UDP-glucose, and the reaction required addition of glycerol bovine serum albumin, and ATP or GTP for maximal activity. Under optimal conditions, extremely efficient glucose transfer was obtained, with 20 to 50% of the substrate utilized in 20 min at 30 degrees C. The polysaccharide formed in the reaction was insoluble in water and soluble in alkali; it was characterized enzymatically and chemically as a beta-(1 leads to 3)-linked linear glucan of chain length 60 to 80. The terminal reducing group was found to be labeled with 14C, as was the substrate used; therefore, the polysaccharide is synthesized de novo. For each glucosyl group transferred, one equivalent of UDP was formed. No evidence was found for a lipid-linked intermediate. When yeast protoplast lysates were subjected to fractionation by centrifugation in Renografin gradients, glucan synthetase was found in the plasma membrane fraction, with the same distribution and sidedness as chitin synthetase. Because of the spatially restricted growth of the cell wall during cell division in budding yeasts, this result suggests localized and reversible activation of the enzyme during the cell cycle.  相似文献   

16.
In the yeast Saccharomyces cerevisiae, the GTP-binding protein Rho1 is required for beta(1-->3)glucan synthase activity, for activation of protein kinase C and the cell integrity pathway and for progression in G1, cell polarization and exocytosis. A genetic screen for cells that become permeabilized at non-permissive temperature was used to isolate in vitro-generated mutants of Rho1p. After undergoing a battery of tests, several of them appeared to be specifically defective in the beta(1-->3) glucan synthesis function of Rho1p. At the non-permissive temperature (37 degrees C), the mutants developed defects in the cell wall, especially at the tip of new buds. In the yeast cell wall, beta(1-->6)glucan is linked to both beta(1-->3)glucan and mannoprotein, as well as occasionally to chitin. We have used the rho1 mutants to study the order of assembly of the cell wall components. The incorporation of [(14)C]-glucose into beta(1-->3)glucan at 37 degrees C was decreased or abolished in the mutants. Concomitantly, a partial defect in the incorporation of label into cell wall mannoproteins and beta(1-->6)glucan was observed. In contrast, YW3458, an inhibitor of glycosylphosphatidylinositol anchor formation, prevented mannoprotein incorporation, whereas the beta(1-->3)-beta(1-->6)glucan complex was synthesized at almost normal levels. As beta(1-->3)glucan can be synthesized in vitro or in vivo independently, we conclude that the order of addition in vivo is beta(1-->3)glucan, beta(1-->6)glucan, mannoprotein. Previous observations indicate that chitin is the last component to be incorporated into the complex.  相似文献   

17.
1. Growth of Escherichia coli on glucosamine results in an induction of glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] and a repression of glucosamine 6-phosphate synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16); glucose abolishes these control effects. 2. Growth of E. coli on N-acetylglucosamine results in an induction of N-acetylglucosamine 6-phosphate deacetylase and glucosamine 6-phosphate deaminase, and in a repression of glucosamine 6-phosphate synthetase; glucose diminishes these control effects. 3. The synthesis of amino sugar kinases (EC 2.7.1.8 and 2.7.1.9) is unaffected by growth on amino sugars. 4. Glucosamine 6-phosphate synthetase is inhibited by glucosamine 6-phosphate. 5. Mutants of E. coli that are unable to grow on N-acetylglucosamine have been isolated, and lack either N-acetylglucosamine 6-phosphate deacetylase (deacetylaseless) or glucosamine 6-phosphate deaminase (deaminaseless). Deacetylaseless mutants can grow on glucosamine but deaminaseless mutants cannot. 6. After growth on glucose, deacetylaseless mutants have a repressed glucosamine 6-phosphate synthetase and a super-induced glucosamine 6-phosphate deaminase; this may be related to an intracellular accumulation of acetylamino sugar that also occurs under these conditions. In one mutant the acetylamino sugar was shown to be partly as N-acetylglucosamine 6-phosphate. Deaminaseless mutants have no abnormal control effects after growth on glucose. 7. Addition of N-acetylglucosamine or glucosamine to cultures of a deaminaseless mutant caused inhibition of growth. Addition of N-acetylglucosamine to cultures of a deacetylaseless mutant caused lysis, and secondary mutants were isolated that did not lyse; most of these secondary mutants had lost glucosamine 6-phosphate deaminase and an uptake mechanism for N-acetylglucosamine. 8. Similar amounts of (14)C were incorporated from [1-(14)C]-glucosamine by cells of mutants and wild-type growing on broth. Cells of wild-type and a deaminaseless mutant incorporated (14)C from N-acetyl[1-(14)C]glucosamine more efficiently than from N[1-(14)C]-acetylglucosamine, incorporation from the latter being further decreased by acetate; cells of a deacetylaseless mutant showed a poor incorporation of both types of labelled N-acetylglucosamine.  相似文献   

18.
The ndvA locus of Rhizobium meliloti is homologous to and can substitute for the chvA locus of Agrobacterium tumefaciens. We have previously shown that an ndvA mutant exhibited reduced motility and formed small, white, empty nodules on alfalfa roots. Here we show that this ndvA mutant is defective in the production of the cyclic extracellular polysaccharide beta-(1----2)glucan, even though a 235,000-dalton protein intermediate, known to be involved in the synthesis of this molecule, is present and active in vitro. The DNA sequence of the ndvA locus revealed a single large open reading frame encoding a 67,100-dalton protein that was homologous to a number of bacterial ATP-binding transport proteins. The greatest degree of relatedness was seen with Escherichia coli HlyB, a protein involved in the export of hemolysin, and with the mdr gene product of mammalian cells, which is also homologous to HlyB and thought to be involved in export. Based on the overall symbiotic phenotype of ndvA mutants, the extensive homology between NdvA and HlyB, the fact that ndvA mutants retained an active 235,000-dalton membrane intermediate, and the absence of extracellular beta-(1----2)glucan, we propose that NdvA is involved in export of beta-(1----2)glucan from the cell and that this process is fundamentally important for normal alfalfa nodule development.  相似文献   

19.
The effect of exogenously applied galactose on the cell wall polysaccharide synthesis and UDP-sugar levels in oat ( Avena sativa L. cv. Victory I) coleoptile segments was studied to clarify the mechanism of inhibition of IAA-induced cell elongation by galactose, and the following results were obtained: (1) The inhibition of IAA-induced cell elongation by galactose became apparent after a 2 h-lag, while the lag was shortened to 1 h when galactose was added to the segments after more than 1 h of IAA application. (2) Galactose inhibited the [14C]-glucose incorporation into cellulosic and non-cellulosic fractions of the cell wall and the increase in net polysaccharide content in the fractions during long-term incubation. (3) The dominant sugar nucleotide in oat coleoptiles was UDP-glucose (2.1 nmol segment−1). Galactose application caused a remarkable decrease in the UDP-glucose level, accompanying a strong accumulation of galactose-1-phosphate and UDP-galactose. (4) Galactose-1-phosphate competitively inhibited the UTP: a- d -glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) activity of the crude enzyme preparation from oat coleoptiles. From these results we conclude that galactose inhibits the IAA-induced cell elongation by inhibiting the formation of UDP-glucose, which is a key intermediate of cell wall polysaccharide synthesis.  相似文献   

20.
We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号