首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The electrophysiological properties of the cation channel of the purified nicotinic acetylcholine receptor (AChR) reconstituted in planar lipid bilayers were characterized. Single-channel currents were activated by acetylcholine, carbamylcholine and suberyldicholine. The single channel conductance (28 pS in 0.3 M NaCl) was ohmic and independent of the agonist. Single channel currents increased with Na+ concentration to a maximum conductance of 95 pS and showed a half-saturation point of 395 mM. The apparent ion selectivity sequence, derived from single-channel current recordings, is: NH+4 greater than Cs+ greater than Rb+ greater than or equal to Na+ Cl-, F-, SO2-(4). The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of at least two distinct open states. The time constants depend on the choice of agonist, being consistently longer for suberyldicholine than for carbamylcholine. Similar channel properties were recorded in bilayers formed from monolayers at the tip of patch pipets . Single-channel currents occur in paroxysms of channel activity followed by quiescent periods. This pattern is more pronounced as the agonist concentration increases, and is reflected in histograms of channel-opening frequencies. Computer simulations with a three-state model, consisting of two closed (unliganded and liganded) and one open state, do not resemble the recorded pattern of channel activity, especially at high agonist concentration. Inclusion of a desensitized liganded state reproduces the qualitative features of channel recordings. The occurrence of paroxysms of channel activity thus seems to result from the transit of AChR through its active conformation, from which it can open several times before desensitizing.  相似文献   

3.
The effects of thio-group modifications on the ion permeability control and ligand binding properties of the acetylcholine receptor were measured in reconstituted membranes prepared from purified Torpedo californica acetylcholine receptor and soybean lipids (asolectin). A quench flow device was used to obtain subsecond time resolution for agonist-stimulated cation influx using carbamylcholine chloride (Carb) as the ligand and 86Rb+ as the cation. The effects of disulfide reduction with dithiothreitol (DTT), affinity alkylation with [4-(N-maleimido)benzyl]trimethylammonium ion and bromoacetylcholine, and nonspecific alkylation with N-ethylmaleimide and N-benzylmaleimide were examined. Activation, fast inactivation, and slow inactivation rates were measured on the chemically modified membranes. The flux results were compared with similar measurements on native membranes, and the role of vesicle size, heterogeneity, and influx time on ion flux results was analyzed. Major conclusions are that the binding sites that react with affinity labels are the same sites that mediate ligand-activated ion flux and that blockade of one of the two ligand binding sites is sufficient to block about 95% of the ion flux response. The main effect of DTT reduction is to shift the EC50 values for activation and slow inactivation to higher Carb concentrations, consistent with a decrease in binding affinity for Carb. The EC50 value for fast inactivation was not affected by DTT. However, the maximum rate of ion flux activation and the maximum rate of fast inactivation were decreased 2-fold after DTT treatment.  相似文献   

4.
Protease digestion of acetylcholine receptor-rich membranes derived from Torpedo californica electroplaques by homogenization and isopycnic centrifugation results in degradation of all receptor subunits without any significant effect on the appearance in electron micrographs, the toxin binding ability, or the sedimentation value of the receptor molecule. Such treatment does produce dramatic changes in the morphology of the normally 0.5- to 2-microns-diameter spherical vesicles when observed by either negative-stain or freeze-fracture electron microscopy. Removal of peripheral, apparently nonreceptor polypeptides by alkali stripping (Neubig et al. 1979, Proc. Natl. Acad. Sci. U. S. A. 76:690-694) results in increased sensitivity of the acetylcholine receptor membranes to the protease trypsin as indicated by SDS gel electrophoretic patterns and by the extent of morphologic change observed in vesicle structure. Trypsin digestion of alkali- stripped receptor membranes results in a limit degradation pattern of all four receptor subunits, whereupon all the vesicles undergo the morphological transformation to minivesicles. The protein-induced morphological transformation and the limit digestion pattern of receptor membranes are unaffected by whether the membranes are prepared so as to preserve the receptor as a disulfide bridged dimer, or prepared so as to generate monomeric receptor.  相似文献   

5.
The functional effects of carboxymethylation of Torpedo californica acetylcholine receptor by an endogenous Torpedo methylase were examined. Both the receptor and the methylase were purified to increase the level of methylation and the sensitivity of the functional assays. The methylase catalyzed the carboxymethylation of all four receptor subunits (alpha, beta, gamma, delta) with preferential labeling of the alpha and gamma subunits. For all the reactions, S-adenosylmethionine was used as the methyl donor. Functional effects of methylation were assessed by measuring ligand binding and ligand-activated ion permeability responses in reconstituted membranes containing purified acetylcholine receptors. Methylation of receptor to a level of 20 mol% had no significant effect on agonist or antagonist binding nor did methylation affect the transition from low-to-high affinity binding triggered by agonists. In contrast, 20% methylation led to a 20% reduction in the agonist-stimulated flux of cations across the receptor-containing membranes. The results suggest that methylation inhibits the ion permeability control properties of acetylcholine receptors.  相似文献   

6.
N-(1-Pyrene)maleimide, a fluorescent, lipophilic, alkylating agent, was used as a probe for the nicotinic acetylcholine receptor (AChR). Preincubation with N-(1-pyrene)maleimide under nonreducing conditions inhibits agonist-induced cation permeability of AChR-enriched membranes. This inhibition is dependent on the concentration of N-(1-pyrene)maleimide used. This correlation was also exhibited by resonance energy transfer of tryptophan fluorescence to N-(1-pyrene)maleimide and by the labeling stoichiometries. However, agonist-induced desensitization, as based on the time-dependent inhibition of alpha-bungarotoxin binding upon preincubation with the agonist carbamylcholine, was unaffected by N-(1-pyrene)maleimide. Alkylation of the AChR by N-(1-pyrene)maleimide is pH-dependent with an apparent pKa of 7.5 and is unaffected by preincubation with carbamylcholine, alpha-bungarotoxin, tubocurarine, or decamethonium. Preincubation with a 25-fold molar excess of N-ethylmaleimide partially protects against N-(1-pyrene)maleimide, yet simultaneous incubation with an equimolar concentration does not protect. In contrast, simultaneous incubation with equimolar concentrations of phenylmaleimide or naphthylmaleimide inhibited N-(1-pyrene)maleimide alkylation by 52 and 67%, respectively. Each AChR subunit is labeled by N-(1-pyrene)maleimide. Prior alkylation with N-ethylmaleimide does not alter the labeling profile but lowers the amount of labeling of all subunits. Reductive methylation of membranes under conditions which dimethylate all or most protein amino groups does not inhibit alkylation by N-(1-pyrene)maleimide. The above results, as well as amino acid analysis of N-(1-pyrene)maleimide-alkylated receptor, indicate that a homologous class of cysteines, which reside in each subunit within the AChR domain embedded in the membrane, are involved in the reaction with N-(1-pyrene)maleimide.  相似文献   

7.
Affinity-labeling of purified acetylcholine receptor from Torpedo californica   总被引:22,自引:0,他引:22  
The receptor for acetylcholine purified from electric tissue of Torpedo californica has been assayed both by affinity-alkylation and by neurotoxin binding. The specific activity by the latter method is about twice that by the former. Four major components of apparent molecular weights of 39,000, 48,000, 58,000 and 64,000 are separated by dodecyl sulfate-acrylamide gel electrophoresis. Reduction and affinity-alkylation of the receptor with a tritiated quaternary ammonium maleimide derivative results in the exclusive labeling of the 39,000 dalton subunit. This subunit, it is concluded, contains all or part of the acetylcholine binding site.  相似文献   

8.
A time-dependent increase in ligand affinity has been studied in cholinergic ligand binding to Torpedocalifornica acetylcholine receptor by inhibition of the kinetics of of [125I]-alpha-bungarotoxin-receptor complex formation. The conversion of the acetylcholine receptor from low to high affinity form was induced by both agonists and antagonists of acetylcholine and was reversible upon removal of the ligand. The slow ligand induced affinity change in vitro resembled electrophysiological desensitization observed at the neuromuscular junction and described by a two-state model (Katz, B., & Thesleff, S. (1957) J. Physiol. 138, 63). A quantitative treatment of the rate and equilibrium constants determined for binding of the agonist carbamoylcholine to membrane bound acetylcholine receptor indicated that the two-state model is not compatible with the in vitro results.  相似文献   

9.
Measurement of small-angle X-ray scattering from a sample of hyaluronic acid of high molecular weight in 0.05 m HNO3 gave persistence length plots which agreed in form with theory and led to apparent persistence lengths of from 4 to 6 nm. Similar measurements in 0.2 m NaCl gave plots which deviated somewhat in form from theoretical expectation, but which could be interpreted to give a persistence length of 4 nm in this solvent. Data for intrinsic viscosity [η] as a function of molecular weight were in reasonable agreement with the Yamakawa-Fujii treatment of [η] for the worm-like chain model for a persistence length of about 4 nm in both 0.5 m NaCl and 0.1 m HCl, perhaps slightly higher in the latter. The values of persistence length estimated from [η] depend somewhat on the choice of chain parameters and the method of correction of experimental data to unperturbed solvent conditions. Experimental data for the sedimentation coefficient, while less definitive, were consistent within experimental uncertainty with the same parameters of the worm-like chain model. These calculated results are in substantial agreement with the values derived from small-angle X-ray scattering. A fraction of hyaluronic acid of low molecular weight in 0.05 m HNO3 gave an estimated molecular weight of 2.7 × 104 and a radius of gyration of 8 nm, in reasonable agreement with expected values based on the worm-like chain model for a persistence length of about 4 nm.  相似文献   

10.
11.
The effects of the five Group I monovalent ions, Li, Na, K, Rb, and Cs, on [3H]acetylcholine binding to Triton X-100 solubilized acetylcholine receptor from Torpedo californica electroplax were examined. Acetylcholine binding was not greatly affected by Li or Na, but was inhibited by the other ions in the order Cs > Rb > K. The inhibition by K appeared to occur by a mechanism identical to that for d-tubocurarine inhibition of acetylcholine binding.  相似文献   

12.
Fluorescence correlation spectroscopy (FCS) is suited to determine low concentrations (10(-8) M) of slowly interacting molecules with different translational diffusion coefficients on the level of single molecule counting. This new technique was applied to characterize the interaction dynamics of tetramethylrhodamin labelled alpha-bungarotoxin (B( *)) with the detergent solubilized nicotinic acetylcholine receptor (AChR) of Torpedo californica electric organ. At pseudo-first-order conditions for AChR, the complex formation with B( *) is monophasic. The association rate coefficient of the monoliganded species AChR . B is k(ass)' = 3.8 . 10(3) s(-1) at 293 K (20 degrees C). The dissociation of bound B( *) from the monomer species AChR . B( *) . B (and AChR . B(2)( *)), initiated by adding an excess of nonlabelled alpha-bungarotoxin (B), is biphasic suggesting a three state cascade for the B-sites: R(alpha) --> R(alpha)' --> R(alpha)' with the exchange dissociation constants: (k(diss)')(B) = 5.5(+/-1) . 10(-5) s(-1) and (k(diss)')(B) = 3(+/-1) . 10(-6) s(-1) at 293 K. The data are consistent with dissociative intermediate steps of ligand exchange on two different interconvertible conformations of one binding site. The dissociation of bound B( *) by excess of the neurotransmitter acetylcholine (ACh) is biphasic. At [ACh] = 0.1 M both B( *) are released from the AChR . B(2)( *) species. The mechanism involves associative ternary intermediates (AChR . B( *)A, AChR . B( *)A(2) and AChR . B(2)( *)A(2)). The equilibrium constants (K(A)) and dissociation rate constants (k(-A)) for ACh in the ternary complex state R(alpha)' and R(alpha)', respectively, are K(A)' = 1.1 . 10(-2) M and k(-A)' = 3 . 10(5) s(-1) and K(A)' = 7.5 . 10(-2) M and k(-A)' = 2 . 10(6) s(-1). It is of physiological importance that the FCS data indicate that the AChR monomer species (M(r) = 290 000), which normally at [ACh] 1 mM only binds one ACh molecule, does bind two ACh molecules at [ACh] 0.1 M.  相似文献   

13.
Acetylcholine receptor from Torpedo californica electric tissue occurs in membrane, and is purified, as a mixture of monomer and dimer. Dimer is cross-linked by disulfide bonds involving one of the four polypeptide components of receptor, namely the one of apparent molecular weight of 64,000.  相似文献   

14.
P R Hartig  M A Raftery 《Biochemistry》1979,18(7):1146-1150
Intact vesicles enriched in acetylcholine receptor from Torpedo californica electroplaque membranes can be separated from collapsed or leaky vesicles and membrane sheets on sucrose density gradients. alpha-Bungarotoxin binding in intact vesicles reveals that approximately 95% of the acetylcholine receptor containing vesicles are formed outside-out (with the synaptic membrane face exposed on the vesicle exterior). The binding data also indicated that only 5% or less of the sites for alpha-bungarotoxin binding to synaptic membranes are located on the interior, cytoplasmic face. Intact vesicles are stable to gentle pelleting and resuspension but are easily osmotically shocked. The vesicles are impermeable to sucrose and Ficoll, but glycerol readily transverses to membrane barrier. Intact vesicles provide a sealed, oriented membrane preparation for studies of vectorial acetylcholine receptor mediated processes.  相似文献   

15.
We investigated the differential repair of DNA lesions induced by bifunctional mitomycin C, monofunctional decarbamoyl mitomycin C and ultraviolet irradiation in normal human, Xeroderma pigmentosum and Fanconi's anemia cells using assays for the survival of clone-forming ability, alkaline sucrose sedimentation and hydroxyapatite chromatography of DNA. Four FA cell lines exhibited about 5 to 15 times higher sensitivity to MC killing, despite normal resistance to u.v. and DMC, than did normal human cells. The XP cells, however, were highly sensitive to u.v. and DMC killings due to their deficiency in excision repair, but the cells unexpectedly had an almost normal capacity for surviving MC and repairing the MC interstrand cross-links.In experiments to determine the sedimentation velocity of the DNA in alkaline sucrose gradients, normal and XP cells showed evidence for single-strand cutting following MC treatment. The sedimentation velocity of the DNA covalently cross-linked by MC in an FA strain was 2.5 times faster than that of the untreated control, and remained unaltered during post-incubation due to the lack of half-excision4 of cross-links. However, FA cells, but not XP cells, had the normal ability to incise DNA with the DMC monoadducts. Hydroxyapatite chromatography revealed the reversibly bihelical property of MC cross-linked DNA after denaturation. Normal and XP cells lost such reversibility during post-MC incubation as the result of cross-link removal with first-order kinetics (half-life = 2 h). The three FA lines studied exhibited two- to eightfold reduced rates of cross-link removal than normal and XP cells, indicating a difference in the repair deficiency of the FA strain. Thus we have been led to conclude that FA cells may have different levels of deficiency in half-excision repair of interstrand cross-links induced by MC, despite having normal mechanisms for repair of u.v.-induced pyrimidine dimers and DMC monoadducts, and vice versa in XP cells.  相似文献   

16.
The immunological structure of the acetylcholine receptor (AChR) from the electric organ of Torpedo californica was studied using a large number of monoclonal antibodies which were initially selected for their abilities to bind to intact AChRs. The monoclonal antibodies were tested for their ability to bind to denatured AChR subunits labeled with 125I. Antibodies derived from rats immunized with individual denatured subunits or a mixture of subunits of Torpedo AChR reacted well in the assay. A much smaller proportion of antibodies derived from rats immunized with native Torpedo AChR or native AChR from Electrophorus electricus electric organ, bovine muscle, or human muscle reacted with denatured subunits of Torpedo AChR. Many monoclonal antibodies reacted with more than one subunit, but they always reacted best with the subunit used for immunization. Those monoclonal antibodies that bound to intact subunits were mapped more precisely by their ability to bind characteristic fragments of each subunit generated by proteolysis with Staphylococcal V8 protease. These fragments were analyzed by SDS polyacrylamide gel electrophoresis, and monoclonal antibodies that precipitated the same fragment pattern were placed in groups. By this method, we define a minimum of 28 determinants on Torpedo AChR.  相似文献   

17.
The effects of local anesthetics on the rate of the agonist-induced increase in ligand affinity of membrane-bound acetylcholine receptor from Torpedo californica were examined. The rate of the transition in receptor affinity was determined by following the time-dependent increase in inhibition of iodinated alpha-bungarotoxin binding caused by 1 microM carbamylcholine. At concentrations below those that directly inhibited the binding of iodinated alpha-bungarotoxin, dibucaine increased the rate of the transition to a high-affinity state and tetracaine decreased this rate. The measured rate constants were 0.026 +/- 0.008 s-1 in the presence and 0.010 +/- 0.002 s-1 in the absence of dibucaine while tetracaine decreased the rate to 0.006 +/- 0.002 s-1 as compared to a control value of 0.012 +/- 0.003 s-1. A parallel was observed between the effectiveness of a compound in increasing or decreasing the rate of the agonist-induced transition in affinity and the change in its apparent inhibition constant in the presence of carbamylcholine (increase or decrease) measured by the displacement of tritiated perhydrohistrionicotoxin. This parallel could be explained by assuming (a) that local anesthetics bound directly to the specific histrionicotoxin binding site or (b) that they bound to a different site and the observed effects were caused by conformational changes.  相似文献   

18.
Tryptic digestion of acetylcholine receptor (AChR) from Torpedo californica did not change the pharmacological specificity and the pathological myasthenic acitivity of the receptor molecule. The product obtained after tryptic digestion was repurified by affinity chromatography on a toxin-Sepharose resin and was designated T-AChR. T-AChR has a sedimentation coefficient of 8.0S and in SDS acrylamide gel electrophoresis shows one major band with a molecular weight of 27,000. Immunological studies reveal that T-AChR binds to anti-AChR antibodies directed only against conformational antigenic determinants.  相似文献   

19.
Functional membranes containing purified Torpedo californica acetylcholine receptor and dioleoylphosphatidylcholine (DOPC) were prepared by a cholate dialysis procedure with lipid to protein ratios of 100-400 to 1 (mol/mol). Spin-labeled lipids were incorporated into the reconstituted membranes and into native membranes prepared from Torpedo electroplax, and electron paramagnetic resonance (EPR) spectra were recorded between 0 and 20 degrees C. The spin-labels included nitroxide derivatives of stearic acid (16-doxylstearic acid), androstane, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidic acid (PA). The phospholipid spin-labels had 16-doxylstearic acid in the sn-2 position. All the spectra showed two components corresponding to a relatively mobile bilayer component and a motionally restricted "protein-perturbed" component. The relative amounts of mobile and perturbed components were quantitated by spectral subtraction and integration techniques. The mobile/perturbed ratio was somewhat temperature dependent, and the results are discussed in terms of exchange between mobile and perturbed environments. Plots of the mobile/perturbed ratios vs. lipid/protein ratios at 1 degree C gave straight lines from which the relative binding affinity of each spin-label and the number of perturbed lipids per receptor protein could be calculated. All the spin-labels gave similar values for the number of perturbed lipids (40 +/- 7), a number close to the number of lipids that will fit around the intramembranous perimeter of the receptor. The affinities of the spin-labeled lipids for the receptor relative to DOPC were androstane (K = 4.3) congruent to 16-doxylstearic acid (4.1) greater than PA (2.7) greater than PE (1.1) approximately PC (1.0) approximately PS (0.7). The lipids having the highest affinity for the acetylcholine receptor were also those that have the largest effects on the ion flux functional properties of the receptor, and the results are discussed in terms of lipid effects on receptor function.  相似文献   

20.
Various acetylcholine receptor-rich membrane preparations from Torpedo californica electroplax tissue were examined using the techniques of differential scanning calorimetry coupled with gel electrophoretic analysis of heat-denaturing material and functional assays following passage through discrete transitions. In unfractionated membranes, four irreversible calorimetric transitions were observed, one of which (Td = 59 degrees C) could be assigned to a complete loss of acetylcholine receptor function. A second lower temperature transition apparently corresponds to loss of certain peripheral membrane proteins including the Mr = 43,000 polypeptide and the acetylcholinesterase activity. Membrane preparations highly enriched in acetylcholine receptor polypeptides contained a major transition at 59 degrees C which could be shown to be sensitive to the presence of added ligands of the acetylcholine receptor, supporting its assignment to structural alterations of the receptor protein or its arrangement in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号