首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Axin is a multidomain protein that plays a critical role in Wnt signaling, serving as a scaffold for down-regulation of beta-catenin. It also activates the JNK mitogen-activated protein kinase by binding to MEKK1. However, it is intriguing that Axin requires several additional elements for JNK activation, including a requirement for homodimerization, sumoylation at the extreme C-terminal sites, and a region in the protein phosphatase 2A-binding domain. In our present study, we have shown that another MEKK family member, MEKK4, also binds to Axin in vivo and mediates Axin-induced JNK activation. Surprisingly MEKK4 binds to a region distinct from the MEKK1-binding site. Dominant negative mutant of MEKK4 attenuates the JNK activation by Axin. Activation of JNK by Axin in MEKK1-/- mouse embryonic fibroblast cells supports the idea that another MEKK can mediate Axin-induced JNK activation. Expression of specific small interfering RNA against MEKK4 effectively attenuates JNK activation by the MEKK1 binding-defective Axin mutant in 293T cells and inhibits JNK activation by wild-type Axin in MEKK1-/- cells, confirming that MEKK4 is indeed another mitogen-activated protein kinase kinase kinase that is specifically involved in Axin-mediated JNK activation independently of MEKK1. We have also identified an additional domain between MEKK1- and MEKK4-binding sites as being required for JNK activation by Axin. MEKK1 and MEKK4 compete for Axin binding even though they bind to sites far apart, suggesting that Axin may selectively bind to MEKK1 or MEKK4 depending on distinct signals or cellular context. Our findings will provide new insights into how scaffold proteins mediate ultimate activation of different mitogen-activated protein kinase kinase kinases.  相似文献   

3.
4.
5.
6.
Hematopoietic progenitor kinase 1 (HPK1) is a member of the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family and an upstream activator of the c-Jun N-terminal kinase (JNK) signaling cascade. HPK1 interacts, through its proline-rich domains, with growth factor receptor-bound 2 (Grb2), CT10-regulated kinase (Crk), and Crk-like (CrkL) adaptor proteins. We identified a novel HPK1-interacting protein of 55 kDa (HIP-55), similar to the mouse SH3P7 protein, containing an N-terminal actin-binding domain and a C-terminal Src homology 3 domain. We found that HPK1 bound to HIP-55 both in vitro and in vivo. When co-transfected, HIP-55 increased HPK1's kinase activity as well as JNK1's kinase activity. A dominant-negative HPK1 mutant blocked activation of JNK1 by HIP-55 showing that HIP-55 activates the JNK1 signaling pathway via HPK1. Our results identify a novel protein, HIP-55, that binds to HPK1 and regulates the JNK1 signaling cascade.  相似文献   

7.
8.
Grb10 is a member of the Grb7 family of adapter proteins lacking intrinsic enzymatic function and encodes functional domains including a pleckstrin homology (PH) domain and an SH2 domain. The role of different Grb10 splice variants in signal transduction of growth factors like insulin or insulin-like growth factor has been described as inhibitory or stimulatory depending on the presence of a functional PH and/or SH2 domain. Performing a yeast two-hybrid screen with the c-kit cytoplasmic tail fused to LexA as a bait and a mouse embryo cDNA library as prey, we found that the Grb10 SH2 domain interacted with the c-kit receptor tyrosine kinase. In the course of SCF-mediated activation of c-kit, Grb10 is recruited to the c-kit receptor in an SH2 domain- and phosphotyrosine-dependent but PH domain-independent manner. We found that Akt and Grb10 form a constitutive complex, suggesting a role for Grb10 in the translocation of Akt to the cell membrane. Indeed, coexpression studies revealed that Grb10 and c-kit activate Akt in a synergistic manner. This dose-dependent effect of Grb10 is wortmannin sensitive and was also seen at a lower level in cells in which c-kit was not expressed. Expression of a Grb10 mutant lacking the SH2 domain as well as a mutant lacking the PH domain did not influence Akt activity. Grb10-induced Akt activation was observed without increased phosphatidylinositol 3-kinase (PI3-kinase) activity, suggesting that Grb10 is a positive regulator of Akt downstream of PI3-kinase. Significantly, deficient activation of Akt by a constitutively activated c-kit mutant lacking the binding site for PI3-kinase (c-kitD814V/Y719F) could be fully compensated by overexpression of Grb10. In Ba/F3 cells, the incapacity of c-kitD814V/Y719F to induce interleukin-3 (IL-3)-independent growth could be rescued by overexpression of Grb10. In contrast, expression of the SH2 deletion mutant of Grb10 together with c-kitD814V/Y719F did not render Ba/F3 cells independent of IL-3. In summary, we provide evidence that Grb10 is part of the c-kit signaling pathway and that the expression level of Grb10 critically influences Akt activity. We propose a model in which Grb10 acts as a coactivator for Akt by virtue of its ability to form a complex with Akt and its SH2 domain-dependent translocation to the cell membrane.  相似文献   

9.
Chelerythrine, a natural benzophenanthridine alkaloid, has been reported to mediate a variety of biological activities, including inhibition of protein kinase C (PKC). Here we report that chelerythrine induced time- and dose-dependent activation of JNK1 and p38 in HeLa cells, which was mediated the upstream kinases, MEKK1 and MKK4. However, treatment with two other potent and selective PKC inhibitors, GF-109203X and G?6983, or down-regulation of PKC activity by prolonged treatment with phorbol 12-myristate 13-acetate had no effect on JNK1 and p38 activities. Furthermore, under the conditions where JNK1 and p38 were activated, we did not observe any significant inhibitory effect of chelerythrine on the activities of PKC isozymes present in HeLa cells. Interestingly, pretreatment with the antioxidants, N-acetyl-L-cysteine, dithiothreitol, and glutathione, impaired chelerythrine-induced JNK1 and p38 activation. In addition, chelerythrine induced apoptosis that was blocked by the antioxidants and the dominant-negative mutants of MEKK1, MKK4, JNK1, and p38. Together, these results uncover a novel biochemical property of chelerythrine, i.e. activation of MEKK1- and MKK4-dependent JNK1 and p38 pathways through an oxidative stress mechanism, which mediate the induction of apoptosis, but are independent of PKC inhibition.  相似文献   

10.
MEKK1 is a MAPK kinase kinase that is activated in response to stimuli that alter the cytoskeleton and cell shape. MEKK1 phosphorylates and activates MKK1 and MKK4, leading to ERK1/2 and JNK activation. MEKK1 has a plant homeobox domain (PHD) that has been shown to have E3 ligase activity. (Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H., and Hunter, T. (2002) Mol. Cell 9, 945-956). MEKK1 kinase activity is required for ubiquitylation of MEKK1. MEKK1 ubiquitylation is inhibited by mutation of cysteine 441 to alanine (C441A) within the PHD. The functional consequence of MEKK1 ubiquitylation is the inhibition of MEKK1 catalyzed phosphorylation of MKK1 and MKK4 resulting in inhibition of ERK1/2 and JNK activation. The C441A mutation within the PHD of MEKK1 prevents ubiquitylation and preserves the ability of MEKK1 to catalyze MKK1 and MKK4 phosphorylation. MEKK1 ubiquitylation represents a mechanism for inhibiting the ability of a protein kinase to phosphorylate substrates and regulate downstream signaling pathways.  相似文献   

11.
12.
It has recently been observed that G protein-coupled receptors (GPCRs) can interact with SH3 domains through polyproline motifs. These interactions appear to be involved in receptor internalization and MAPK signalling. Here we report that the third cytoplasmic loop of the dopamine D3 receptor can interact in vitro with the adaptor protein Grb2. While the amino- and carboxy-terminal SH3 domains of Grb2 separately did not interact with the D3 receptor loop, the interaction is at least partially maintained with a Grb2 mutant for the amino-terminal SH3 domain, but disrupted for a Grb2 mutant with a nonfunctional carboxy-terminal SH3 domain. The data indicate the need of structural integrity of the entire Grb2 protein for the interaction and dominant role of the carboxy-terminal SH3 domain in the interaction. Disruption of the PXXP motifs in the D3 receptor did not affect the interaction with Grb2. These results indicate that GPCRs may contain SH3 ligands that do not contain the postulated minimal consensus sequence PXXP.  相似文献   

13.
MEKK4 is an effector of the embryonic TRAF4 for JNK activation   总被引:2,自引:0,他引:2  
TRAF4 has previously been shown to activate JNK through an unknown mechanism. Here, we show that endogenous TRAF4 and MEKK4 associate in both human K562 cells and mouse E10.5 embryos. TRAF4 interacts with the kinase domain of MEKK4. However, this association does not require MEKK4 kinase activity. The interaction of MEKK4 and TRAF4 are further demonstrated by the colocalization of TRAF4 and MEKK4 in cells. Importantly, although TRAF4 has little or no ability to activate JNK independently, coexpression of TRAF4 and MEKK4 results in synergistic activation of JNK that is inhibited by a kinase-inactive mutant of MEKK4, MEKK4K1361R. MEKK4 binds the TRAF domain of TRAF4 and MEKK4/TRAF4 activation of JNK is inhibited by expression of the TRAF domain. Furthermore, TRAF4 stimulates MEKK4 kinase activity by promoting MEKK4 oligomerization and JNK activation can be stimulated by chemical induction of MEKK4 dimerization. The findings identify MEKK4 as the MAPK kinase kinase for TRAF4 regulation of the JNK pathway.  相似文献   

14.
The B class cell-attached ephrins mediate contact-dependent cell-cell communications and transduce the contact signals to the host cells through the binding interactions of their cytoplasmic domains. Two classes of intracellular effectors of B ephrins have been identified: one contains the PSD-95/Dlg/ZO-1 (PDZ) domain (for example PDZ-RGS3), and the second the Src homology 2 (SH2) domain (e.g. the Grb4 adaptor protein). The interaction with Grb4 requires phosphorylation of tyrosine residues on the conserved cytoplasmic C-terminal region of B ephrins, while binding to the PDZ domain is independent of tyrosine phosphorylation. However, the exact phosphorylation site(s) required for signaling remained obscure and it is also unknown whether the two classes of effectors can bind to B ephrins simultaneously or if the binding of one affects the binding of the other. We report here that phosphorylation of Tyr304 in the functional C-terminal region (residues 301-333) of ephrin B2 confers high-affinity binding to the SH2 domain of the Grb4 protein. Tyrosine phosphorylation at other candidate sites resulted in only minor change of the binding of Tyr304-phosphorylated ephrin B peptide (i.e. ephrinB2(301-333)-pY304) with the SH2 domain. (1)H-(15)N NMR HSQC experiments show that only the ephrinB2(301-333)-pY304 peptide forms a stable and specific binding complex with the SH2 domain of Grb4. The SH2 and PDZ domains were found to bind to the Tyr304 phosphopeptide both independently and at the same time, forming a three-component molecular complex. Taken together, our studies identify a novel SH2 domain binding motif, PHpY304EKV, on the cytoplasmic domains of B ephrins that may be essential for reverse signaling via the Grb4 adaptor protein alone or in concert with proteins containing PDZ domains.  相似文献   

15.
MEKK2 and MEKK3 are MAPK kinase kinases that activate the ERK5 pathway by phosphorylating and activating the MAPK kinase, MEK5. Activated MEK5 then phosphorylates and activates ERK5. PB1 domains were first defined in the p67phox and Bem1p proteins and have been shown to mediate protein-protein heterodimerization. A PB1 domain is encoded within the N-terminal portion of MEKK2, MEKK3, and MEK5. Herein, we analyze the functional role of MEKK2, MEKK3, and MEK5 PB1 domains in the ERK5 activation pathway. The PB1 domains of MEKK2 and MEKK3 bind the PB1 domain of MEK5 but do not significantly homo- or heterodimerize with one another in vitro. Furthermore, co-immunoprecipitation of MEKK2 and MEK5 from cell lysates shows that they form a complex in vivo. Deletion or mutation of the MEKK2 PB1 domain abolishes MEKK2-MEK5 complexes, demonstrating that the PB1 domain interaction is required for MEKK2-MEK5 interactions. Expression in cells of the MEKK2 or MEKK3 PB1 domain inhibits ERK5 activation, whereas expression of a mutant MEKK2 unable to bind the MEK5 PB1 domain or expression of the p67phox PB1 domain has no effect on ERK5 activation. These findings demonstrate that the PB1 domain mediates the association of MEKK2 and MEKK3 with MEK5 and that the respective PB1 domains of these kinases are critical for regulation of the ERK5 pathway. The free PB1 domain of MEKK2 or MEKK3 functions effectively to inhibit the ERK5 pathway but not the p38 or JNK pathways, demonstrating the specific and unique requirement of the MEKK2 and MEKK3 PB1 domain in regulating ERK5 activation.  相似文献   

16.
The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C‐terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique β‐turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X‐ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre‐organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild‐type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide.  相似文献   

17.
18.
The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), two immunomodulatory neuropeptides, act as anti-inflammatory factors for activated microglia, by inhibiting the production of proinflammatory factors. In the present study the effects of VIP/PACAP on the MEKK1/MEK4/JNK transduction pathway and on the subsequent changes in Jun family members, a transduction pathway clearly involved in the activation of microglia cells were examined. VIP/PACAP inhibit MEKK1 activity and the subsequent phosphorylations of MEK4, JNK, and c-Jun, which result in a decrease in the AP-1 binding and a marked change in the composition of AP-1 complexes from c-Jun/c-Fos to JunB/c-Fos. Furthermore, VIP stimulates JunB production in LPS-stimulated microglia. Both inhibition of the MEKK1/MEK4/JNK pathway, leading to a reduction in phosphorylated c-Jun, and the stimulation of JunB are mediated through the specific VPAC1 receptor and cAMP/PKA pathway. The VIP/PACAP interference with the stress-induced SAPK/JNK pathway in activated microglia may represent a significant element in the regulation of inflammatory response in the CNS by endogenous neuropeptides.  相似文献   

19.
We have recently demonstrated that nuclear factor-inducing kinase (NIK) plays a crucial role in osteopontin (OPN)-induced mitogen-activated protein kinase/I kappa B alpha kinase-dependent nuclear factor kappa B (NF kappa B)-mediated promatrix metalloproteinase-9 activation (Rangaswami, H., Bulbule, A., and Kundu, G. C. (2004) J. Biol. Chem. 279, 38921-38935). However, the molecular mechanism(s) by which OPN regulates NIK/MEKK1-dependent activating protein-1 (AP-1)-mediated promatrix metalloproteinase-9 activation and whether JNK1 plays any role in regulating both these pathways that control the cell motility are not well defined. Here we report that OPN induces alpha v beta3 integrin-mediated MEKK1 phosphorylation and MEKK1-dependent JNK1 phosphorylation and activation. Overexpression of NIK enhances OPN-induced c-Jun expression, whereas overexpressed NIK had no role in OPN-induced JNK1 phosphorylation and activation. Sustained activation of JNK1 by overexpression of wild type but not kinase negative MEKK1 resulted in suppression of ERK1/2 activation. But this did not affect the OPN-induced NIK-dependent ERK1/2 activation. OPN stimulated both NIK and MEKK1-dependent c-Jun expression, leading to AP-1 activation, whereas NIK-dependent AP-1 activation is independent of JNK1. OPN also enhanced JNK1-dependent/independent AP-1-mediated urokinase type plasminogen activator (uPA) secretion, uPA-dependent promatrix metalloproteinase-9 (MMP-9) activation, cell motility, and invasion. OPN stimulates tumor growth, and the levels of c-Jun, AP-1, urokinase type plasminogen activator, and MMP-9 were higher in OPN-induced tumor compared with control. To our knowledge this is first report that OPN induces NIK/MEKK1-mediated JNK1-dependent/independent AP-1-mediated pro-MMP-9 activation and regulates the negative crosstalk between NIK/ERK1/2 and MEKK1/JNK1 pathways that ultimately controls the cell motility, invasiveness, and tumor growth.  相似文献   

20.
The cytosolic 185 and 210 kDa Bcr-Abl protein tyrosine kinases play important roles in the development of Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (Ph+ ALL). p185 and p210 Bcr-Abl contain identical abl-encoded sequences juxtaposed to a variable number of bcr-derived amino acids. As the mitogenic and transforming activities of tyrosine kinases involve stimulation of the Ras pathway, we analyzed Bcr-Abl oncoproteins for interactions with cytoplasmic proteins that mediate Ras activation. Such polypeptides include Grb2, which comprises a single Src homology 2 (SH2) domain flanked by two SH3 domains, and the 66, 52 and 46 kDa Shc proteins which possess an SH2 domain in their carboxy-terminus. Grb2 associates with tyrosine phosphorylated proteins through its SH2 domain, and with the Ras guanine nucleotide releasing protein mSos1 through its SH3 domains. mSos1 stimulates conversion of the inactive GDP-bound form of Ras to the active GTP-bound state. In bcr-abl-transformed cells, Grb2 and mSos1 formed a physical complex with Bcr-Abl. In vitro, the Grb2 SH2 domain bound Bcr-Abl through recognition of a tyrosine phosphorylation site within the amino-terminal bcr-encoded sequence (p.Tyr177-Val-Asn-Val), that is common to both Bcr-Abl proteins. These results suggest that autophosphorylation within the Bcr element of Bcr-Abl creates a direct physical link to Grb2-mSos1, and potentially to the Ras pathway, and thereby modifies the target specificity of the Abl tyrosine kinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号