首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bispecific O-methyltransferase (OMT, EC 2.1.1.68) which catalyses the meta-specific methylation of caffeic acid and 5-hydroxyferulic acid was purified to homogeneity from the developing secondary xylem of aspen (Populus tremuloides). The enzyme was purified by conventional techniques and affinity chromatography on S-adenosyl-L-homocysteine agarose using substrate elution. The enzyme has a M(r) of 40,000 as determined by SDS-PAGE. Amino acid sequences of three peptides produced from a proteolytic digest of bispecific OMT were obtained by automated Edman degradation. Polyclonal antibodies raised against the purified OMT reacted strongly to OMT in both purified and unpurified fractions in western blots. Addition of an equal concentration of anti-OMT IgG to crude extract protein inhibited OMT activity by more than 70%.  相似文献   

2.
An aspen lignin-specific O-methyltransferase (bi-OMT; S-adenosyl-l-methionine: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase, EC 2.1.1.68) antisense sequence in the form of a synthetic gene containing the cauliflower mosaic virus 35S gene sequences for enhancer elements, promoter and terminator was stably integrated into the tobacco genome and inherited in transgenic plants with a normal phenotype. Leaves and stems of the transgenes expressed the antisense RNA and the endogenous tobacco bi-OMT mRNA was suppressed in the stems. Bi-OMT activity of stems was decreased by an average of 29% in the four transgenic plants analyzed. Chemical analysis of woody tissue of stems for lignin building units indicated a reduced content of syringyl units in most of the transgenic plants, which corresponds well with the reduced activity of bi-OMT. Transgenic plants with a suppressed level of syringyl units and a level of guaiacyl units similar to control plants were presumed to have lignins of distinctly different structure than control plants. We concluded that regulation of the level of bi-OMT expression by an antisense mechanism could be a useful tool for genetically engineering plants with modified lignin without altering normal growth and development.Abbreviations OMT O-methyltransferase - bi-OMT bispecific O-methyltransferase - CAD cinnamyl alcohol dehydrogenase - Ptomt1 Populus tremuloides bi-OMT cDNA clone  相似文献   

3.
A cDNA clone,CaOMTl encoding ano-diphenol-O-methyltransferase (OMT), which is involved in capsaicin biosynthesis, was isolated by screening of a cDNA library prepared from the mRNA of pepper (Capsicum annuum L.) pericarp. Nucleotide sequence analysis ofCaOMTl revealed that it had an open reading frame of 1080 bp which encodes a polypeptide with a predicted molecular weight of 39,430 D, corresponding well with the size of the known OMT’s of tobacco, poplar, aspen, alfalfa, and cabbage. It also had five conserved boxes which appear in all known OMT’s. The nucleotide sequence ofCaOMTl had 89–74% identity with the OMT cDNA’s of tobacco, aspen, alfalfa, and poplar, but a relatively lower identity of 59% with the OMT cDNA of maize. Amino acid sequence analysis also revealed that CaOMT1 has high identity with the known OMT’s which have a substrate ofo-diphenolic compounds, especially 5-hydroxyferulic acid and caffeic acid. It supportsCaOMTl which encodes an OMT. Southern blot analysis suggested thatCaOMTl might exist in the form of multiple copies in the pepper genome.CaOMTl is expressed preferentially in pepper fruit and its expression levels increased during pepper fruit development, but decreased during fruit ripening, suggesting that theCaOMTl gene is fruit development-related.CaOMTl is the first reported cDNA clone for enzymes related to the phenlypropanoid pathway in pepper.  相似文献   

4.
The nucleotide sequence of the ppc gene, the structural gene for phosphoenolpyruvate carboxylase [EC 4.1.1.31], of Escherichia coli K-12 was determined. The gene codes for a polypeptide comprising 883 amino acid residues with a calculated molecular weight of 99,061. The amino acid sequence deduced from the nucleotide sequence was entirely consistent with the protein chemical data obtained with the purified enzyme, including the NH2- and COOH-terminal sequences and amino acid composition. The coding region is preceded by two putative ribosome binding sites, and is followed closely by a good representative of rho-independent terminator. The codon usage in the ppc gene suggests a moderate expression of the gene. The secondary structure of the enzyme was predicted from the deduced amino acid sequence.  相似文献   

5.
We report that the cDNA clone (Accession No. U70424), previously isolated from Arabidopsis thaliana as encoding a caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT) (1), has now been overexpressed in Escherichia coli BL21 and its recombinant protein identified as a novel flavonol 3'-OMT. It is, therefore, renamed AtOMT1. This cDNA clone has previously been identified on the basis of its 88% amino acid sequence similarity and 80% identity to the aspen bispecific lignin OMT (2), the type member of the group involved in lignin biosynthesis. Our data indicate that this novel OMT uses the flavonol quercetin as the preferred substrate, but neither of the hydroxycinnamic acids, caffeic or 5-hydroxyferulic, to any significant extent. This indicates that the high sequence similarity/identity of AtOMT1 to that of the aspen lignin OMT (2) is not sufficient to assign the function of this gene product.  相似文献   

6.
G Massad  H Zhao    H L Mobley 《Journal of bacteriology》1995,177(20):5878-5883
Proteus, Providencia, and Morganella species produce deaminases that generate alpha-keto acids from amino acids. The alpha-keto acid products are detected by the formation of colored iron complexes, raising the possibility that the enzyme functions to secure iron for these species, which do not produce traditional siderophores. A gene encoding an amino acid deaminase of uropathogenic Proteus mirabilis was identified by screening a genomic library hosted in Escherichia coli DH5 alpha for amino acid deaminase activity. The deaminase gene, localized on a cosmid clone by subcloning and Tn5::751 mutagenesis, was subjected to nucleotide sequencing. A single open reading frame, designated aad (amino acid deaminase), which appears to be both necessary and sufficient for deaminase activity, predicts a 473-amino-acid polypeptide (51,151 Da) encoded within an area mapped by transposon mutagenesis. The predicted amino acid sequence of Aad did not share significant amino acid sequence similarity with any other polypeptide in the PIR or SwissProt database. Amino acid deaminase activity in both P. mirabilis and E. coli transformed with aad-encoding plasmids was not affected by medium iron concentration or expression of genes in multicopy in fur, cya, or crp E. coli backgrounds. Enzyme expression was negatively affected by growth with glucose or glycerol as the sole carbon source but was not consistent with catabolite repression.  相似文献   

7.
8.
9.
10.
The isolation and characterization of cDNA and homologous genomic clones encoding the lignin O-methyltransferase (OMT) from maize is reported. The cDNA clone has been isolated by differential screening of maize root cDNA library. Southern analysis indicates that a single gene codes for this protein. The genomic sequence contains a single 916 bp intron. The deduced protein sequence from DNA shares significant homology with the recently reported lignin-bispecific caffeic acid/5-hydroxyferulic OMTs from alfalfa and aspen. It also shares homology with OMTs from bovine pineal glands and a purple non-sulfur photosynthetic bacterium. The mRNA of this gene is present at different levels in distinct organs of the plant with the highest accumulation detected in the elongation zone of roots. Bacterial extracts from clones containing the maize OMT cDNA show an activity in methylation of caffeic acid to ferulic acid comparable to that existing in the plant extracts. These results indicate that the described gene encodes the caffeic acid 3-O-methyltransferase (COMT) involved in the lignin biosynthesis of maize.  相似文献   

11.
A cDNA encoding an O-methyltransferase (OMT) was isolated from salt-tolerant barley roots by subtraction hybridization with cDNAs of salt-tolerant barley roots as a tester cDNA and cDNAs of the salt-sensitive barley roots as a driver cDNA. The deduced amino acid sequence showed significant identity with plant caffeic acid/5-hydroxyferulic acid OMTs. Southern blot analysis showed that the OMT gene was a single copy in both salt-tolerant and -sensitive barley. The cloned gene was expressed in a wheat germ cell-free system to produce the OMT, which had methylating activity for caffeic acid. Northern blot analysis showed that the OMT gene was expressed constitutively in the salt-tolerant barley roots and the expression level was increased 1.5 times by salt stress, but the salt-sensitive barley showed no expression of the gene in roots and leaves.  相似文献   

12.
13.
In the present study, a 0.47 kb OMT gene construct from aspen, encoding for an enzyme O-methyltransferase (OMT, EC 2.1.1.6), in antisense orientation was used to down-regulate lignin biosynthesis in Leucaena leucocephala. The plants were transformed with Agrobacterium tumefaciens strain harboring the antisense gene, and the transformation was confirmed by PCR amplification of the npt II gene. The integration of a heterologous antisense OMT gene construct in transformed plants led to a maximum of 60% reduction in OMT activity relative to control. The evaluation of total lignin content by the Klason method revealed a maximum of 28% reduction. Histochemical analyses of stem sections depicted a reduction in lignin content and normal xylem development. The results also suggested a probable increase in aldehyde levels and a decrease in syringyl units. Lignin down-regulation was accompanied by an increase in methanol soluble phenolics to an extent that had no impact on wood discoloration, and the plants displayed a normal phenotype. Concomitantly, an increase of up to 9% in cellulose content was also observed. Upon alkali extraction, modified lignin was more extractable as evident from reduced Klason lignin in saponified residue and increased alkali soluble phenolics. The results together suggested that the extent of down-regulation of OMT activity achieved may lead to quality amelioration of Leucaena with respect to its applicability in pulp and paper manufacture as well as nutritive and easily digestible forage production.  相似文献   

14.
15.
Seasonal expression of caffeoyl-CoA O-methyltransferase (EC 2.1.1.104) was analyzed in aspen developing secondary xylem in parallel with caffeate O-methyltransferase (EC 2.1.1.68). Enzyme activity and mRNA levels for both enzymes peaked in the middle of the growing season. These results strongly suggest that both forms of O-methyltransferase were actively participating in lignin precursor biosynthesis during the growing season. To determine the role of each enzyme form, xylem extracts from two days in the growing season were assayed with four substrates: caffeoyl-CoA, 5-hydroxyferuloyl-CoA, caffeate acid and 5-hydroxyferulic acid. Recombinant forms of caffeoyl-CoA and caffeate O-methyltransferase were also assayed with these substrates. The recombinant enzymes have different substrate specificity with the caffeoyl-CoA O-methyltransferase being essentially specific for CoA ester substrates with a preference for caffeoyl-CoA, while caffeate O-methyltransferase utilized all four substrates with a preference for the free acid forms. We suggest that caffeoyl-CoA O-methyltransferase is likely to be responsible for biosynthesis of lignin precursors in the guaiacyl pathway and may represent a more primitive enzyme form leftover from very early land plant evolution. Caffeate O-methyltransferase is more likely to be responsible for lignin precursor biosynthesis in the syringyl pathway, especially since it can catalyze methylation of 5-hydroxyferuloyl-CoA quite effectively. This latter enzyme form then may be considered a more recently evolved component of the lignin biosynthetic pathways of the evolutionarily advanced plants such as angiosperms.  相似文献   

16.
The cDNA fragment encoding caffeic acid 3-O-methyltransferase(COMT) in Chinese white poplar (Populus tomentosa Carr.) was isolated and cloned by RT-PCR technique. The size of the cDNA fragment is 1 080 bp, which almost covers the whole cDNA-encoding region. Authors’ cDNA fragment in P. tomentosa shares 98.7% homology with the reported corresponding cDNA in the P. tremuloids at nucleotide level, 99.4% homology at amino acid level, respectively. The analysis of Northern dot hybridization showed that COMT is expressed specifically in the developing secondary xylem of stem during the season of xylem differentiation, which means the linkage between the gene expression for a monolignol biosynthetic enzyme and seasonal regulation of xylem development in woody plant.  相似文献   

17.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid. We have purified CMP-NeuAc synthetase from an Escherichia coli O18:K1 cytoplasmic fraction to apparent homogeneity by ion exchange chromatography and affinity chromatography on CDP-ethanolamine linked to agarose. The enzyme has a specific activity of 2.1 mumol/mg/min and migrates as a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis. The enzyme has a requirement for Mg2+ or Mn2+ and exhibits optimal activity between pH 9.0 and 10. The apparent Michaelis constants for the CTP and NeuAc are 0.31 and 4 mM, respectively. The CTP analogues 5-mercuri-CTP and CTP-2',3'-dialdehyde are inhibitors. The purified CMP-N-acetylneuraminic acid synthetase has a molecular weight of approximately 50,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding CMP-N-acetylneuraminic acid synthetase is located on a 3.3-kilobase HindIII fragment. The purified enzyme appears to be identical to the 50,000 Mr polypeptide encoded by this gene based on insertion mutations that result in the loss of detectable enzymatic activity. The amino-terminal sequence of the purified protein was used to locate the start codon for the CMP-NeuAc synthetase gene. Both the enzyme and the 50,000 Mr polypeptide have the same NH2-terminal amino acid sequence. Antibodies prepared to a peptide derived from the NH2-terminal amino acid sequence bind to purified CMP-NeuAc synthetase.  相似文献   

18.
19.
D-Arabinono-1,4-lactone oxidase catalysing the final step of D-erythroascorbic acid biosynthesis was purified from the mitochondrial fraction of Saccharomyces cerevisiae. Based on the amino acid sequence analysis of the enzyme, an unknown open reading frame (ORF), YML086C, was identified as the ALO1 gene encoding the enzyme. The ORF of ALO1 encoded a polypeptide consisting of 526 amino acids with a calculated molecular mass of 59493Da. The deduced amino acid sequence of the enzyme shared 32% and 21% identity with that of L-gulono-1,4-lactone oxidase from rat and L-galactono-1,4-lactone dehydrogenase from cauliflower, respectively, and contained a putative transmembrane segment and a covalent FAD binding site. Blot hybridization analyses showed that a single copy of the gene was present in the yeast genome and that mRNA of the ALO1 gene was 1.8kb in size. In the alo1 mutants, D-erythroascorbic acid and the activity of D-arabinono-1,4-lactone oxidase could not be detected. The intracellular concentration of D-erythroascorbic acid and the enzyme activity increased up to 6.9-fold and 7.3-fold, respectively, in the transformant cells carrying ALO1 in multicopy plasmid. The alo1 mutants showed increased sensitivity towards oxidative stress, but overexpression of ALO1 made the cells more resistant to oxidative stress.  相似文献   

20.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号