首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The contraction rhythms of two isolated cardiac myocytes, each of which beats at different frequencies at first, become synchronized after the establishment of mutual contacts, suggesting that mutual entrainment occurs due to electrical and/or mechanical interactions between two myocytes. The intracellular concentration of free Ca(2+) also changes rhythmically in association with the rhythmic contraction of myocytes (Ca(2+) oscillation), and such a Ca(2+) oscillation was also synchronized among cultured cardiac myocytes. In this study, we investigated whether intercellular communication other than via gap junctions was involved in the intercellular synchronization of intracellular Ca(2+) oscillation in spontaneously beating cultured cardiac myocytes. Treatment with either blockers of gap junction channels or an un-coupler of E-C coupling did not affect the intercellular synchronization of Ca(2+) oscillation. In contrast, treatment with a blocker of P2 purinoceptors resulted in the asynchronization of Ca(2+) oscillatory rhythms among cardiac myocytes. The present study suggested that the extracellular ATP-purinoceptor system was responsible for the intercellular synchronization of Ca(2+) oscillation among cardiac myocytes.  相似文献   

2.
Phospholemman (PLM) regulates contractility and Ca(2+) homeostasis in cardiac myocytes. We characterized excitation-contraction coupling in myocytes isolated from PLM-deficient mice backbred to a pure congenic C57BL/6 background. Cell length, cell width, and whole cell capacitance were not different between wild-type and PLM-null myocytes. Compared with wild-type myocytes, Western blots indicated total absence of PLM but no changes in Na(+)/Ca(2+) exchanger, sarcoplasmic reticulum (SR) Ca(2+)-ATPase, alpha(1)-subunit of Na(+)-K(+)-ATPase, and calsequestrin levels in PLM-null myocytes. At 5 mM extracellular Ca(2+) concentration ([Ca(2+)](o)), contraction and cytosolic [Ca(2+)] ([Ca(2+)](i)) transient amplitudes and SR Ca(2+) contents in PLM-null myocytes were significantly (P < 0.0004) higher than wild-type myocytes, whereas the converse was true at 0.6 mM [Ca(2+)](o). This pattern of contractile and [Ca(2+)](i) transient abnormalities in PLM-null myocytes mimics that observed in adult rat myocytes overexpressing the cardiac Na(+)/Ca(2+) exchanger. Indeed, we have previously reported that Na(+)/Ca(2+) exchange currents were higher in PLM-null myocytes. Activation of protein kinase A resulted in increased inotropy such that there were no longer any contractility differences between the stimulated wild-type and PLM-null myocytes. Protein kinase C stimulation resulted in decreased contractility in both wild-type and PLM-null myocytes. Resting membrane potential and action potential amplitudes were similar, but action potential duration was much prolonged (P < 0.04) in PLM-null myocytes. Whole cell Ca(2+) current densities were similar between wild-type and PLM-null myocytes, as were the fast- and slow-inactivation time constants. We conclude that a major function of PLM is regulation of cardiac contractility and Ca(2+) fluxes, likely by modulating Na(+)/Ca(2+) exchange activity.  相似文献   

3.
Microchannels (40- microm wide, 10- microm high, 10-mm long, 70- microm pitch) were patterned in the silicone elastomer, polydimethylsiloxane on a microscope coverslip base. Integrated within each microchamber were individually addressable stimulation electrodes (40- microm wide, 20- microm long, 100-nm thick) and a common central pseudo-reference electrode (60- microm wide, 500- microm long, 100-nm thick). Isolated rabbit ventricular myocytes were introduced into the chamber by micropipetting and subsequently capped with a layer of mineral oil, thus creating limited volumes of saline around individual myocytes that could be varied from 5 nL to 100 pL. Excitation contraction coupling was studied by monitoring myocyte shortening and intracellular Ca(2+) transients (using Fluo-3 fluorescence). The amplitude of stimulated myocyte shortening and Ca(2+) transients remained constant for 90 min in the larger volume (5 nL) configuration, although the shortening (but not the Ca(2+) transient) amplitude gradually decreased to 20% of control within 60 min in the low volume (100 pL) arrangement. These studies indicate a lower limit for the extracellular volume required to stimulate isolated adult cardiac myocytes. Whereas this arrangement could be used to create a screening assay for drugs, individual microchannels (100 pL) can also be used to study the effects of limited extracellular volume on the contractility of single cardiac myocytes.  相似文献   

4.
Reductions in cardiac sarcoplasmic reticulum calcium-ATPase (Serca2a) levels are thought to underlie the prolonged calcium (Ca(2+)) transients and consequent reduced contractile performance seen in human cardiac hypertrophy and heart failure. In freshly isolated cardiac myocytes from rats with monocrotaline-induced right ventricular hypertrophy we found reduced sarcoplasmic reticulum Serca2a expression and prolonged Ca(2+)transients, characteristic of hypertrophic cardiac disease.Modulation of intracellular Ca(2+)levels, Ca(2+) kinetics or Ca(2+)sensitivity is the focus of many current therapeutic approaches to improve contractile performance in the hypertrophic or failing heart. However, the functional effects of increasing Serca2a expression on Ca(2+) handling properties in myocytes from an animal model of cardiac hypertrophy are largely unknown. Here, we describe enhancement of the deficient Ca(2+) handling properties evident in myocytes from hypertrophied hearts following adenoviral-mediated transfer of the human Serca2a gene to these myocytes.These results highlight the importance of Serca2a deficiencies in the hypertrophic phenotype of cardiac muscle and suggest a simple, effective approach for manipulation of normal cardiac function.  相似文献   

5.
Junctin is a transmembrane protein located at the cardiac junctional sarcoplasmic reticulum (SR) and forms a quaternary complex with the Ca(2+) release channel, triadin and calsequestrin. Impaired protein interactions within this complex may alter the Ca(2+) sensitivity of the Ca(2+) release channel and may lead to cardiac dysfunction, including hypertrophy, depressed contractility, and abnormal Ca(2+) transients. To study the expression of junctin and, for comparison, triadin, in heart failure, we measured the levels of these proteins in SR from normal and failing human hearts. Junctin was below our level of detection in SR membranes from failing human hearts, and triadin was downregulated by 22%. To better understand the role of junctin in the regulation of Ca(2+) homeostasis and contraction of cardiac myocytes, we used an adenoviral approach to overexpress junctin in isolated rat cardiac myocytes. A recombinant adenovirus encoding the green fluorescent protein served as a control. Infection of myocytes with the junctin-expressing virus resulted in an increased RNA and protein expression of junctin. Ca(2+) transients showed a decreased maximum Ca(2+) amplitude, and contractility of myocytes was depressed. Our results demonstrate that an increased expression of junctin is associated with an impaired Ca(2+) homeostasis. Downregulation of junctin in human heart failure may thus be a compensatory mechanism.  相似文献   

6.
Ca(2+), which enters cardiac myocytes through voltage-dependent Ca(2+) channels during excitation, is extruded from myocytes primarily by the Na(+)/Ca(2+) exchanger (NCX1) during relaxation. The increase in intracellular Ca(2+) concentration in myocytes by digitalis treatment and after ischemia/reperfusion is also thought to result from the reverse mode of the Na(+)/Ca(2+) exchange mechanism. However, the precise roles of the NCX1 are still unclear because of the lack of its specific inhibitors. We generated Ncx1-deficient mice by gene targeting to determine the in vivo function of the exchanger. Homozygous Ncx1-deficient mice died between embryonic days 9 and 10. Their hearts did not beat, and cardiac myocytes showed apoptosis. No forward mode or reverse mode of the Na(+)/Ca(2+) exchange activity was detected in null mutant hearts. The Na(+)-dependent Ca(2+) exchange activity as well as protein content of NCX1 were decreased by approximately 50% in the heart, kidney, aorta, and smooth muscle cells of the heterozygous mice, and tension development of the aortic ring in Na(+)-free solution was markedly impaired in heterozygous mice. These findings suggest that NCX1 is required for heartbeats and survival of cardiac myocytes in embryos and plays critical roles in Na(+)-dependent Ca(2+) handling in the heart and aorta.  相似文献   

7.
The TTX-sensitive Ca(2+) current [I(Ca(TTX))] observed in cardiac myocytes under Na(+)-free conditions was investigated using patch-clamp and Ca(2+)-imaging methods. Cs(+) and Ca(2+) were found to contribute to I(Ca(TTX)), but TEA(+) and N-methyl-D-glucamine (NMDG(+)) did not. HEK-293 cells transfected with cardiac Na(+) channels exhibited a current that resembled I(Ca(TTX)) in cardiac myocytes with regard to voltage dependence, inactivation kinetics, and ion selectivity, suggesting that the cardiac Na(+) channel itself gives rise to I(Ca(TTX)). Furthermore, repeated activation of I(Ca(TTX)) led to a 60% increase in intracellular Ca(2+) concentration, confirming Ca(2+) entry through this current. Ba(2+) permeation of I(Ca(TTX)), reported by others, did not occur in rat myocytes or in HEK-293 cells expressing cardiac Na(+) channels under our experimental conditions. The report of block of I(Ca(TTX)) in guinea pig heart by mibefradil (10 microM) was supported in transfected HEK-293 cells, but Na(+) current was also blocked (half-block at 0.45 microM). We conclude that I(Ca(TTX)) reflects current through cardiac Na(+) channels in Na(+)-free (or "null") conditions. We suggest that the current be renamed I(Na(null)) to more accurately reflect the molecular identity of the channel and the conditions needed for its activation. The relationship between I(Na(null)) and Ca(2+) flux through slip-mode conductance of cardiac Na(+) channels is discussed in the context of ion channel biophysics and "permeation plasticity."  相似文献   

8.
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.  相似文献   

9.
Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca(2+) waves that propagated with mean velocities of approximately 14 micrometer/s, reaching approximately 80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca(2+) waves, although the velocity and number of cells communicated by the Ca(2+) signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca(2+) signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P(2)-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca(2+) signals in wild-type neonatal mouse cardiac myocytes. Activation of P(2)-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca(2+) signals. The importance of such ATP-mediated Ca(2+) signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.  相似文献   

10.
Previous studies have shown lower systolic intracellular Ca(2+) concentrations ([Ca(2+)](i)) and reduced sarcoplasmic reticulum (SR)-releasable Ca(2+) contents in myocytes isolated from rat hearts 3 wk after moderate myocardial infarction (MI). Ca(2+) entry via L-type Ca(2+) channels was normal, but that via reverse Na(+)/Ca(2+) exchange was depressed in 3-wk MI myocytes. To elucidate mechanisms of reduced SR Ca(2+) contents in MI myocytes, we measured SR Ca(2+) uptake and SR Ca(2+) leak in situ, i.e., in intact cardiac myocytes. For sham and MI myocytes, we first demonstrated that caffeine application to release SR Ca(2+) and inhibit SR Ca(2+) uptake resulted in a 10-fold prolongation of half-time (t(1/2)) of [Ca(2+)](i) transient decline compared with that measured during a normal twitch. These observations indicate that early decline of the [Ca(2+)](i) transient during a twitch in rat myocytes was primarily mediated by SR Ca(2+)-ATPase and that the t(1/2) of [Ca(2+)](i) decline is a measure of SR Ca(2+) uptake in situ. At 5.0 mM extracellular Ca(2+), systolic [Ca(2+)](i) was significantly (P 相似文献   

11.
We studied the effects of increased Ca(2+) influx on alpha(1)-adrenoceptor-stimulated InsP formation in adult rat cardiac myocytes. We further examined if such effects could be mediated through a specific alpha(1)-adrenoceptor subtype. [(3)H]InsP responses to adrenaline were dependent on extracellular Ca(2+) concentration, from 0.1 microM to 2 mM, and were completely blocked by Ca(2+) removal. However, in cardiac myocytes preloaded with BAPTA, a highly selective calcium chelating agent, Ca(2+) concentrations higher than 1 microM had no effect on adrenaline-stimulated [(3)H]InsP formation. Taken together these results suggest that [(3)H]InsP formation induced by alpha(1)-adrenergic stimulation is in part mediated by increased Ca(2+) influx. Consistent with this, ionomycin, a calcium ionophore, stimulated [(3)H]InsP formation. This response was additive with the response to adrenaline stimulation implying that different signaling mechanisms may be involved. In cardiac myocytes treated with the alpha(1B)-adrenoceptor alkylating agent, CEC, [(3)H]InsP formation remained unaffected by increased Ca(2+) concentrations, a pattern similar to that observed when intracellular Ca(2+) was chelated with BAPTA. In contrast, addition of the alpha(1A)-subtype antagonist, 5'-methyl urapidil, did not affect the Ca(2+) dependence of [(3)H]InsP formation. Neither nifedipine, a voltage-dependent Ca(2+) channel blocker nor the inorganic Ca(2+) channel blockers, Ni(2+) and Co(2+), had any effect on adrenaline stimulated [(3)H]InsP, at concentrations that inhibit Ca(2+) channels. The results suggest that in adult rat cardiac myocytes, in addition to G protein-mediated response, alpha(1)-adrenergic-stimulated [(3)H]InsP formation is activated by increased Ca(2+) influx mediated by the alpha(1B)-subtype.  相似文献   

12.
13.
Confocal microscopy was used to investigate the temporal and spatial properties of Ca(2+) transients and Ca(2+) sparks in ventricular myocytes of the rainbow trout (Oncorhynchus mykiss). Confocal imaging confirmed the absence of T tubules and the long ( approximately 160 microm), thin ( approximately 8 microm) morphology of trout myocytes. Line scan imaging of Ca(2+) transients evoked by electrical stimulation in cells loaded with fluo 4 revealed spatial inhomogeneities in the temporal properties of Ca(2+) transients across the width of the myocytes. The Ca(2+) wavefront initiated faster, rose faster, and reached larger peak amplitudes in the periphery of the myocyte compared with the center. These differences were exacerbated by stimulation with the L-type Ca(2+) channel agonist (-)BAY K 8644 or by sarcoplasmic reticulum (SR) inhibition with ryanodine and thapsigargin. Results reveal that the shape of the trout myocyte allows for rapid diffusion of Ca(2+) from the cell periphery to the cell center, with SR Ca(2+) release contributing to the cytosolic Ca(2+) rise in a time-dependent manner. Spontaneous Ca(2+) sparks were exceedingly rare in trout myocytes under control conditions (1 sparking cell from 238 cells examined). This is in marked contrast to the rat where a total of 56 spontaneous Ca(2+) sparks were observed in 9 of 11 myocytes examined. Ca(2+) sparklike events were observed in a very small number of trout myocytes (15 sparks from 9 of 378 cells examined) after stimulation with either (-)BAY K 8644 or high Ca(2+) (6 mM). Reducing temperature to 15 degrees C in intact myocytes or permeabilizing myocytes to adjust intracellular conditions to favor Ca(2+) spark detection was without significant effects. Possible reasons for the rarity of Ca(2+) sparks in a cardiac myocyte with an active SR are discussed.  相似文献   

14.
The phosphorylation of the cardiac muscle isoform of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) on serine 38 has been described as a regulatory event capable of very significant enhancement of enzyme activity (Hawkins, C., Xu, A., and Narayanan, N. (1994) J. Biol. Chem. 269, 31198-31206). Independent confirmation of these observations has not been forthcoming. This study has utilized a polyclonal antibody specific for the phosphorylated serine 38 epitope on the Ca(2+)-ATPase to evaluate the phosphorylation of SERCA2a in isolated sarcoplasmic reticulum vesicles and isolated rat ventricular myocytes. A quantitative Western blot approach failed to detect serine 38-phosphorylated Ca(2+)-ATPase in either kinase-treated sarcoplasmic reticulum vesicles or suitably stimulated cardiac myocytes. Calibration standards confirmed that the detection sensitivity of assays was adequate to detect Ser-38 phosphorylation if it occurred on at least 1% of Ca(2+)-ATPase molecules in SR vesicle experiments or on at least 0.1% of Ca(2+)-ATPase molecules in cardiac myocytes. The failure to detect a phosphorylated form of the Ca(2+)-ATPase in either preparation (isolated myocyte, purified sarcoplasmic reticulum vesicles) suggests that Ser-38 phosphorylation of the Ca(2+)-ATPase is not a significant regulatory feature of cardiac Ca(2+) homeostasis.  相似文献   

15.
Many cellular functions are regulated by the Ca(2+) signal which contains specific information in the form of frequency, amplitude, and duration of the oscillatory dynamics. Any alterations or dysfunctions of components in the calcium signaling pathway of cardiac myocytes may lead to a diverse range of cardiac diseases including hypertrophy and heart failure. In this study, we have investigated the hidden dynamics of the intracellular Ca(2+) signaling and the functional roles of its regulatory mechanism through in silico simulations and parameter sensitivity analysis based on an experimentally verified mathematical model. It was revealed that the Ca(2+) dynamics of cardiac myocytes are determined by the balance among various system parameters. Moreover, it was found through the parameter sensitivity analysis that the self-oscillatory Ca(2+) dynamics are most sensitive to the Ca(2+) leakage rate of the sarcolemmal membrane and the maximum rate of NCX, suggesting that these two components have dominant effects on circulating the cytosolic Ca(2+).  相似文献   

16.
Recent studies indicate that low concentrations of acetaldehyde may function as the primary factor in alcoholic cardiomyopathy by disrupting Ca(2+) handling or disturbing cardiac excitation-contraction coupling. By producing reactive oxygen species, acetaldehyde shifts the intracellular redox potential from a reduced state to an oxidized state. We examined whether the redox state modulates acetaldehyde-induced Ca(2+) handling by measuring Ca(2+) transient using a confocal imaging system and single ryanodine receptor type 2 (RyR2) channel activity using the planar lipid bilayer method. Ca(2+) transient was recorded in isolated rat ventricular myocytes with incorporated fluo 3. Intracellular reduced glutathione level was estimated using the monochlorobimane fluorometric method. Acetaldehyde at 1 and 10 microM increased Ca(2+) transient amplitude and its relative area in intact myocytes, but acetaldehyde at 100 microM decreased Ca(2+) transient area significantly. Acetaldehyde showed a minor effect on Ca(2+) transient in myocytes in which intracellular reduced glutathione content had been decreased against challenge of diethylmaleate to a level comparable to that induced by exposure to approximately 50 microM acetaldehyde. Channel activity of the RyR2 with slightly reduced cytoplasmic redox potential from near resting state (-213 mV) or without redox fixation was augmented by all concentrations of acetaldehyde (1-100 microM) used here. However, acetaldehyde failed to activate the RyR2 channel, when the cytoplasmic redox potential was kept with a reduced (-230 mV) or markedly oxidized (-180 mV) state. This result was similar to effects of acetaldehyde on Ca(2+) transient in diethylmaleate-treated myocytes, probably being in oxidized redox potential. The present results suggest that acetaldehyde acts as an RyR2 activator to disturb cardiac muscle function, and redox potential protects the heart from acetaldehyde-induced alterations in myocytes.  相似文献   

17.
Recently we demonstrated that PLC(epsilon) plays an important role in beta-adrenergic receptor (betaAR) stimulation of Ca(2+)-induced Ca(2+) release (CICR) in cardiac myocytes. Here we have reported for the first time that a pathway downstream of betaAR involving the cAMP-dependent Rap GTP exchange factor, Epac, and PLC(epsilon) regulates CICR in cardiac myocytes. To demonstrate a role for Epac in the stimulation of CICR, cardiac myocytes were treated with an Epac-selective cAMP analog, 8-4-(chlorophenylthio)-2'-O-methyladenosine-3',5'-monophosphate (cpTOME). cpTOME treatment increased the amplitude of electrically evoked Ca(2+) transients, implicating Epac for the first time in cardiac CICR. This response is abolished in PLC(epsilon)(-/-) cardiac myocytes but rescued by transduction with PLC(epsilon), indicating that Epac is upstream of PLC(epsilon). Furthermore, transduction of PLC(epsilon)(+/+) cardiac myocytes with a Rap inhibitor, RapGAP1, significantly inhibited isoproterenol-dependent CICR. Using a combination of cpTOME and PKA-selective activators and inhibitors, we have shown that betaAR-dependent increases in CICR consist of two independent components mediated by PKA and the novel Epac/(epsilon) pathway. We also show that Epac/PLC(epsilon)-dependent effects on CICR are independent of sarcoplasmic reticulum loading and Ca(2+) clearance mechanisms. These data define a novel endogenous PKA-independent betaAR-signaling pathway through cAMP-dependent Epac activation, Rap, and PLC(epsilon) that enhances intracellular Ca(2+) release in cardiac myocytes.  相似文献   

18.
Cardiac myocytes isolated and cultured from 11 day chick embryos present a Ca(2+)-dependent regulatory volume decrease (RVD) when exposed to hyposmotic stimulus. The RVD of myocytes from different embryonic stages were analyzed to evaluate their physiological performance through development. Among the several embryonic stages analyzed (6, 11, 16 and 19 days) only 19 day cardiac myocytes present a greater RVD when compared with 11 day (considered as control), the other ages showed no difference in the regulatory response. As it is known that RVD is Ca(2+) dependent, we decided to investigate the transient free Ca(2+) response during the hyposmotic swelling of the 11 and 19 day stages. The 11 day cardiac myocyte showed a transient 40% increase in intracellular free Ca(2+) when submitted to hyposmotic solutions, and the free Ca(2+) returned to baseline levels while the cells remained in hyposmotic buffer. However, the intracellular free Ca(2+) transient in the 19 day cells during hyposmotic challenge increases 100% and instead of returning to baseline levels, declines to 55% above control, well after the 11 day transient has returned to baseline. Also, quantitative fluorescence microscopy revealed that 19 day cardiac myocytes have more sarcoplasmic reticulum (SR) Ca(2+) ATPase sites per cell as compared to the 11 day cells. Our findings suggest that 19 day cells have more developed intracellular Ca(2+) stores (SR). By evoking the mechanism of Ca(2+) induced Ca(2+) release, the cells have more free Ca(2+) available for signaling the RVD during hyposmotic swelling.  相似文献   

19.
The mitochondrial permeability transition (MPT) is implicated in cardiac reperfusion/reoxygenation injury. In isolated ventricular myocytes, the sulfhydryl (SH) group modifier and MPT inducer phenylarsine oxide (PAO) caused MPT, severe hypercontracture, and irreversible membrane injury associated with increased cytoplasmic free [Ca(2+)]. Removal of extracellular Ca(2+) or depletion of nonmitochondrial Ca(2+) pools did not prevent these effects, whereas the MPT inhibitor cyclosporin A was partially protective and the SH-reducing agent dithiothreitol fully protective. In permeabilized myocytes, PAO caused hypercontracture at much lower free [Ca(2+)] than in its absence. Thus PAO induced hypercontracture by both increasing myofibrillar Ca(2+) sensitivity and promoting mitochondrial Ca(2+) efflux during MPT. Hypercontracture did not directly cause irreversible membrane injury because lactate dehydrogenase (LDH) release was not prevented by abolishing hypercontracture with 2,3-butanedione monoxime. However, loading myocytes with the membrane-permeable Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) prevented PAO-induced LDH release, thus implicating the PAO-induced rise in cytoplasmic [Ca(2+)] as obligatory for irreversible membrane injury. In conclusion, PAO induces MPT and enhanced susceptibility to hypercontracture in isolated cardiac myocytes, both key features also implicated in cardiac reperfusion and reoxygenation injury.  相似文献   

20.
Extensive work has been done regarding the impact of thiamine deprivation on the nervous system. In cardiac tissue, chronic thiamine deficiency is described to cause changes in the myocardium that can be associated with arrhythmias. However, compared with the brain, very little is known about the effects of thiamine deficiency on the heart. Thus this study was undertaken to explore whether thiamine deprivation has a role in cardiac arrhythmogenesis. We examined hearts isolated from thiamine-deprived and control rats. We measured heart rate, diastolic and systolic tension, and contraction and relaxation rates. Whole cell voltage clamp was performed in rat isolated cardiac myocytes to measure L-type Ca(2+) current. In addition, we investigated the global intracellular calcium transients by using confocal microscopy in the line-scan mode. The hearts from thiamine-deficient rats did not degenerate into ventricular fibrillation during 30 min of reperfusion after 15 min of coronary occlusion. The antiarrhythmogenic effects were characterized by the arrhythmia severity index. Our results suggest that hearts from thiamine-deficient rats did not experience irreversible arrhythmias. There was no change in L-type Ca(2+) current density. Inactivation kinetics of this current in Ca(2+)-buffered cells was retarded in thiamine-deficient cardiac myocytes. The global Ca(2+) release was significantly reduced in thiamine-deficient cardiac myocytes. The amplitude of caffeine-releasable Ca(2+) was lower in thiamine-deficient myocytes. In summary, we have found that thiamine deprivation attenuates the incidence and severity of postischemic arrhythmias, possibly through a mechanism involving a decrease in global Ca(2+) release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号