首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged stimulation of the β2‐adrenergic receptor (β2AR) leads to receptor ubiquitination and downregulation. Using a genome‐wide RNA interference screen, we identified arrestin domain‐containing 3 (ARRDC3) as a gene required for β2AR regulation. The ARRDC3 protein interacts with ubiquitin ligase neural precursor development downregulated protein 4 (NEDD4) through two conserved PPXY motifs and recruits NEDD4 to the activated receptor. The ARRDC3 protein also interacts and co‐localizes with activated β2AR. Knockdown of ARRDC3 expression abolishes the association between NEDD4 and β2AR. Furthermore, functional inactivation of ARRDC3, either through small interfering RNA (siRNA)‐mediated knockdown or overexpression of a mutant that does not interact with NEDD4, blocks receptor ubiquitination and degradation. Our results establish ARRDC3 as an essential adaptor for β2AR ubiquitination.  相似文献   

2.
A single thiol group of E. Coli RNA polymerase reacts rapidly with 7-chloro-4-nitrobenzo-2 oxa-1,3 diazole (NBD-C1) at pH 7.5 with slower reaction of a much larger number of such groups. Reaction of the unique thiol is associated with maximal loss of about 60% of the catalytic activity. The extent of inactivation is independent of the template used in the assay. Initiation of RNA synthesis shows no inhibition, thereby implicating the elongation step as the impaired function. Neither substrate, template, rifampcin, nor the elongation inhibitor rose bengal protect the enzyme against reaction with NBD-C1. These observations suggest that the partial inactivation of RNA polymerase on reaction with a thiol group is most likely due to a local conformational change outside of the active site which influences the active site in an indirect manner.  相似文献   

3.
4.
5.
Incubation with protein kinase NII did not result in phosphorylation or inactivation of mouse kidney ornithine decarboxylase. Partially purified ornithine decarboxylase preparations contained a protein kinase activity and stimulated the activity of RNA polymerase I. However, these properties were due to contaminating protein(s) since further purification reduced the kinase activity and removal of the ornithine decarboxylase with a specific antiserum did not abolish the ability to stimulate RNA polymerase I. Antibodies to RNA polymerase I did not interact with ornithine decarboxylase and antibodies to ornithine decarboxylase did not interact with RNA polymerase I. These results indicate that: a) mammalian ornithine decarboxylase activity is not regulated by phosphorylation by protein kinase NII or the contaminating kinase, and b) the ability of impure preparations of ornithine decarboxylase to stimulate RNA polymerase I is due to a contaminating unrelated protein.  相似文献   

6.
Guan L  Bebenek K  Kunkel TA  Greenberg MM 《Biochemistry》2010,49(45):9904-9910
5'-(2-Phosphoryl-1,4-dioxobutane) (DOB) is an oxidized abasic lesion that is produced by a variety of DNA damaging agents, including several antitumor antibiotics. DOB efficiently and irreversibly inhibits DNA polymerase β, an essential base excision repair enzyme in mammalian cells. The generality of this mode of inhibition by DOB is supported by the inactivation of DNA polymerase λ, which may serve as a possible backup for DNA polymerase β during abasic site repair. Protein digests suggest that Lys72 and Lys84, which are present in the lyase active site of DNA polymerase β, are modified by DOB. Monoaldehyde analogues of DOB substantiate the importance of the 1,4-dicarbonyl component of DOB for efficient inactivation of Pol β and the contribution of a freely diffusible electrophile liberated from the inhibitor by the enzyme. Inhibition of DNA polymerase β's lyase function is accompanied by inactivation of its DNA polymerase activity as well, which prevents long patch base excision repair of DOB. Overall, DOB is highly refractory to short patch and long patch base excision repair. Its recalcitrance to succumb to repair suggests that DOB is a significant source of the cytotoxicity of DNA damaging agents that produce it.  相似文献   

7.
8.
9.
10.
We describe the cloning and analysis of mRPA1, the cDNA encoding the largest subunit (RPA194) of murine RNA polymerase I. The coding region comprises an open reading frame of 5151?bp that encodes a polypeptide of 1717 amino acids with a calculated molecular mass of 194?kDa. Alignment of the deduced protein sequence reveals homology to the β′ subunit of Escherichia coli RNA polymerase in the conserved regions a-h present in all large subunits of RNA polymerases. However, the overall sequence homology among the conserved regions of RPA1 from different species is significantly lower than that observed in the corresponding β′-like subunits of class II and III RNA polymerase. We have raised two types of antibodies which are directed against the conserved regions c and f of RPA194. Both antibodies are monospecific for RPA194 and do not cross-react with subunits of RNA polymerase II or III. Moreover, these antibodies immunoprecipitate RNA polymerase I both from murine and human cell extracts and, therefore, represent an invaluable tool for the identification of RNA polymerase I-associated proteins.  相似文献   

11.
A Pich  H Bahl 《Journal of bacteriology》1991,173(6):2120-2124
The DNA-dependent RNA polymerase (EC 2.7.7.6) from Clostridium acetobutylicum DSM 1731 has been purified to homogeneity and characterized. The purified enzyme was composed of four subunits and had a molecular mass of 370,000 Da. Western immunoblot analysis with polyclonal antibodies against the sigma 70 subunit of Escherichia coli RNA polymerase identified the 46,000-Da subunit as an immunologically and probably functionally related protein. The other three subunits of 128,000, 117,000, and 42,000 Da are tentatively analogous to the beta, beta', and alpha subunits, respectively, of other eubacterial RNA polymerases. The RNA polymerase activity was completely dependent on Mg2+, nucleoside triphosphates, and a DNA template. The presence of Mg2+ or Mn2+ in buffers used for purification or storage caused irreversible inactivation of the RNA polymerase.  相似文献   

12.
13.
Using indirect immunofluorescence visualization techniques we investigated the distribution of RNA polymerase B (or II) and histone H1 at heat shock puff loci in Drosophila melanogaster polytene chromosomes at different times during and after heat shock. After heat treatments of from 5 to 45 min, the heat shock puff displayed intense fluorescence when stained for RNA polymerase B, but relatively little fluorescence when stained for histone H1. Returning heat shocked larvae to room temperature resulted in the appearance of a distinctive pattern of RNA polymerase-associated fluorescence in the heat shock puff at 87C, presumably reflecting events associated with the inactivation and regression of this puff. Large differences observed in the apparent RNA polymerase B content of puffs of similar size suggest that the interaction of RNA polymerase B with chromosomal loci does not depend on simply the state of condensation or decondensation of the chromatin.  相似文献   

14.
15.
16.
Evidence for template-specific sites in DNA polymerases   总被引:3,自引:0,他引:3  
Using rabbit hemoglobin messenger RNA as template, E. coli polymerase I produces poly (dT), poly (dA)·(dT) and antimessenger DNA products. Mild heating of the enzyme causes a differential loss in activity as indicated by three rates of inactivation for the three types of synthesis. Heat inactivation studies have also been carried out with DNA polymerases from oncogenic RNA viruses and mammalian sources using various homopolymer-oligomer pairs as primertemplates. In general, for any given enzyme these synthetic primer-templates reveal different extents of inactivation of the polymerase. These findings may be interpreted to suggest a) that the binding of DNA polymerase to various primer-templates produces conformational changes in the enzyme which are dependent on the type of template bound, or b) that many, if not all, DNA polymerases have different subsites for different templates.  相似文献   

17.
Escherichia coli RNA polymerase holoenzyme bound to promoter sites on T7 DNA is attacked and inactivated by the polyanion heparin. The highly stable RNA polymerase-T7 DNA complex formed at the major T7 A1 promoter can be completely inactivated by treatment with heparin, as shown by monitoring the loss of activity of such complexes, and by gel electrophoresis of the RNA products transcribed. The rate of this inactivation is much faster than the rate of dissociation of RNA polymerase from promoter complexes, and thus represents a direct attack of heparin on the polymerase molecule bound at promoter A1. Experiments employing the nitrocellulose filter binding technique suggest that heparin inactivates E. coli RNA polymerase when bound to T7 DNA by directly displacing the enzyme from the DNA. RNA polymerase bound at a minor T7 promoter (promoter C) is much less sensitive to heparin attack than enzyme bound at promoter A1. Thus, the rate of inactivation of RNA polymerase-T7 DNA complexes by heparin is dependent upon the structure of the promoter involved even though the inhibitor binds to a site on the enzyme molecule.  相似文献   

18.
19.
The RPC34 gene of Saccharomyces cerevisiae was cloned by immunological screening, using antibodies raised against the C34 polypeptide of the RNA polymerase III (C). This single copy gene was located near the centromere of chromosome XIV. It included a coding sequence of 317 amino acids that strictly matched two internal oligopeptides of C34. This polypeptide is a specific component of RNA polymerase III, with no significant homology to any other RNA polymerase subunit known so far. It is an essential subunit, since inactivation by deletion or nonsense mutations led to a recessive lethal phenotype. Moreover, a partially blocked mutant, rpc34-F297, had a reduced tRNA synthesis in vivo but no detectable effect on 5 S RNA synthesis. The latter phenotype was observed for all conditionally defective RNA polymerase III mutants isolated so far.  相似文献   

20.
RNA synthesis in fat body nuclei of Sarcophaga peregrina larvae was temporarily activated after injection of β-ecdysone: increased synthesis was detectable 2 hr after injecting the hormone and lasted for at least 2 hr. This increased RNA synthesis was insensitive to α-amanitin and was observed in KCl-free reaction mixture, indicating that β-ecdysone activated RNA polymerase I but not RNA polymerase II. No activation was observed when protein synthesis was inhibited by cycloheximide, suggesting that protein synthesis was essential for the activation of the nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号