首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linoleic acid, and its hydroperoxides and secondary autoxidation products were orally administered to rats (400 mg/rat). Their effects on hepatic lipid metabolism were examined. Linoleic acid reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase. It decreased the CoASH level and caused the accumulation of long-chain acyl-CoA. Hydroperoxides changed the compositions of unsaturated fatty acids in the hepatic lipids and lowered the content of neutral lipids. Secondary products stimulated carnitine palmitoyltransferase and decreased the content of neutral lipids. They reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase, and the levels of CoASH and acetyl-CoA. Thus, the effect of secondary products was apparently different from those of linoleic acid and its hydroperoxides.  相似文献   

2.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

3.
We studied hepatic microsomal gamma-linolenoyl-CoA elongation and fatty acid composition of liver microsomes in spontaneously diabetic Wistar BB rats. The liver microsomal gamma-linolenoyl-CoA elongation was decreased in diabetic Wistar BB rats during both normo- and hyperglycemic periods and restored during the hypoglycemic period following insulin treatment. These results are in agreement with our previously reported data on linoleic acid delta 6 and delta 5 desaturations and support the non-parallel relationship between the chain elongation system and the glycemia. The fatty acid composition of BB rat liver microsomes was only partially consistent with the gamma-linolenoyl-CoA elongation activity at the different periods of glycemia, probably because factors other than elongation impairments were involved in the evolution of fatty acid composition.  相似文献   

4.
The fatty acid and cholesterol contents of tissue membranes are the determinants of membrane stability and functionality. This study was designed to evaluate the influence of a high monounsaturated fatty acid diet on the fatty acid composition of rat liver microsomes and on their cholesterol and lipid phosphorus content. Weanling animals were fed for 5 weeks with high fat diets containing olive oil or corn oil. Saturated fatty acids were increased and oleic acid decreased in microsomal total phospholipids and in the three major phosphoglycerides, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), of rats fed corn oil as compared to the olive oil group. The percentage of linoleic acid was higher in the corn oil group, but only for total phospholipids and PC. Linoleic and alpha-linolenic metabolites were significantly increased in total phospholipids of olive oil-fed animals with respect to those fed corn oil. These changes were responsible for the low unsaturation index found in microsomal phospholipids of the corn oil group. The diet did not affect the microsome cholesterol or the lipid phosphorus content. These results show that, in olive oil-fed rats, the cholesterol content and the degree of unsaturation of liver microsomes was similar to that observed in weanling animals; this probably suggests an adequate maintenance of functionality of membranes in olive oil-fed animals.  相似文献   

5.
The susceptibility of liver microsomes to lipid peroxidation was evaluated in seven species: rat, rabbit, trout, mouse, pig, cow, and horse. Lipid peroxidation was measured as thiobarbituric acid reactive substances formed in the presence of either FeCl3-ADP/ascorbate or FeCl2/H2O2 initiating systems. For rat, rabbit, and trout microsomes, the order of susceptibility to peroxidation was rat > rabbit >> trout. The lack of peroxidation in trout microsomes could be explained by high microsomal vitamin E levels. Membrane fatty acid levels differed between species. Docosahexaenoic acid predominated in the trout, arachidonic acid in the rat, and linoleic acid in the rabbit. The contribution of individual fatty acids to lipid peroxidation reflected the degree of unsaturation with docosahexaenoic > arachidonic >>> linoleic. For all species except trout, the predicted susceptibility to peroxidation, based on the response of individual fatty acids, agreed well with directly measured microsomal peroxidation. With the exception of the trout, vitamin E content ranged from 0.083–0.311 nmol/mg microsomal protein between species, and low levels did not influence susceptibility to peroxidation. Trout microsomes peroxidized only after vitamin E depletion by prolonged incubation. The data indicate that below a vitamin E threshold, species differences in membrane susceptibility to peroxidation can be reasonably predicted based only on content of individual peroxidizable fatty acids.  相似文献   

6.
Morris 7777 rat hepatoma cells in culture possess high delta 6 and delta 5 desaturase activities over linolenic acid added to the medium as albumin or alpha-fetoprotein complexes. After 2 hours incubation with [1-14C] linolenic acid (7 microM), around 40% of the radioactivity was recovered in other polyene fatty acids, mainly pentaenes. After 24 hours incubation with this substrate the polyene derivatives raised to more than 60%. However, [1-14C] linoleic acid was poorly converted to other polyene fatty acids. Linoleic acid up to 58 microM concentration in the medium do not inhibited linolenic acid desaturation. Long-term supplementation with 50 microM linoleic or linolenic acid, which modified the fatty acid profile of hepatoma lipids, enhanced the desaturase activities against linoleic acid. Desaturase activities were not affected by the fatty acid protein carrier, alpha-fetoprotein or albumin.  相似文献   

7.
A peripheral component of the delta 6-fatty acid-desaturase system of rat liver microsomes has been isolated from the cytosol by ultracentrifugation at a saline density of 1.26 g/ml. It exhibited lipoprotein characteristics with an approximate protein/lipid ratio of 1.22 and free fatty acids and phosphatidylcholine as its main lipid components. Linoleic acid desaturation activity diminished in washed microsomes, since they lost the adsorbed cytosolic fraction. Addition of the factor reactivated the reaction and the recovery was dependent on the concentration of the factor in the medium. Linoleic acid and linoleyl-CoA were bound by the cytosolic fraction. However, the transport of substrate to the desaturase was not apparently a main function of the cytosolic fraction, since transport occurred equally in the absence of the factor. Moreover, the solubilization of linoleyl-CoA was not enhanced and the free monomeric concentration was not altered by the presence of the cytosolic fraction. In addition, the factor did not divert delta 6-desaturase substrate to or from other metabolic pathways such as esterification to phospholipids. gamma-Linolenic acid produced by delta 6-desaturation of linoleic acid in the microsomes inhibited the desaturase, but it was removed by the factor from the membrane towards the cytosol, preventing the inhibition. The anti-inhibitory effect of the cytosolic factor was blockaded by addition of columbinic acid or gamma-linolenic acid to the factor. Moreover, the inhibitory effect of arachidonic acid was not prevented by addition of the cytosolic fraction. These results suggest that the cytosolic fraction studied would optimize the delta 6-desaturation of linoleic acid in vitro in rat liver microsomes by removal of the product, gamma-linolenic acid, as it is formed.  相似文献   

8.
9.
Linoleic acid diol glucuronides have been isolated previously from urine of patients suffering from generalized peroxisomal disorders. Glucuronidation of linoleic acid and linoleic acid diols by human liver microsomes was studied to investigate the role of glucuronide conjugation in the metabolism of linoleic acid diols. Glucuronide products were isolated and analyzed by TLC and HPLC-MS. HPLC-MS showed ions with (m/z) corresponding to singly glucuronidated linoleic acid diols while TLC revealed that the glucuronidation was at a hydroxyl position. Kinetic analysis gave apparent K(m) values in the range of 50-200 microM and V(max) rates from 5 to 12 nmol/mg x min. These rates are substantially higher than activities seen for most endogenous hydroxylated substrates. Assays using each of the four individually purified linoleic acid diol enantiomers suggest that glucuronidation occurs at only one of the two hydroxyl groups of each enantiomer. These results show for the first time that hydroxylated fatty acids are actively glucuronidated by human liver microsomes and suggest that glucuronidation may play a significant role in the biotransformation of linoleic acid diols in humans.  相似文献   

10.
E Hietanen  O H?nninen  M Laitinen  M Lang 《Enzyme》1978,23(2):127-134
Elaidic and linoleic acids were administered at doses of 40 and 200 mg/kg i.p. every second day for 4 weeks to rats fed a fat-free diet. The fatty acids had only a slight effect on the weight gain of the animals. The amount of microsomal protein was slightly decreased with the higher dose of linoleic acid. The higher dose level of both fatty acids decreased the microsomal phospholipid content. The relative amounts of microsomal phospholipid fatty acids were also altered due to fatty acid administration. The activity of microsomal NADPH cytochrome c reductase and microsomal cytochrome P-450 contents were decreased by the higher dose of linoleic acid. The hepatic aryl hydrocarbon hydroxylase and p-nitroanisole O-demethylase activities decreased in fatty acid-treated rats. The UDP-glucuronosyltransferase activity was also lowered after the fatty acid administration. The results suggest that fatty acid-induced changes in the activities of drug-metabolizing enzymes may be due to the microenvironmental changes of membrane-bound enzymes.  相似文献   

11.
Activities of ethanolaminephosphotransferases (EC 2.7.8.1) and choline phosphotransferases (EC 2.7.8.2) in microsomal fractions from brains and livers of mature rats are increased several fold by the addition of 1,2-diacyl-sn-glycerols or 1-alkyl-2-acyl-sn-clycerols. Oleic acid added with diacylglycerols stimulated further the synthesis of lecithins by liver microsomes, confirming the work of Sribney and Lyman (Can J. Biochem. 51: 1479-1486, 1973). With alkylacylglycerols, oleic and stearic acids were inhibitory and linoleic acid was even more inhibitory for the synthesis of both 1-alkyl-1-acyl-sn-glycero-3-phosphorylcholines and the corresponding ethanolamine compounds with microsomes from both tissues. Free fatty acids without added diglycerides had mixed effects. These results are best explained by postulating the presence of two isoenzymes each for ethanolaminephosphotransferase and cholinephosphotransferase of which only one is affected by free fatty acids. Regulation of the phosphotransferases by free fatty acids may determine the proportion of CDP-choline and CDP-ethanolamine used for synthesis of diacyl and alkylacyl types of these phosphoglycerides.  相似文献   

12.
Twenty-four lambs (Ovis aries) were used in a 45-day finishing study to evaluate the effects of feeding diets high in linoleic acid (C(18:2), omega-6) on liver lipid composition and on lipogenic enzyme activities in subcellular fractions of liver. Lambs were fed either a 5% safflower oil (SO, high linoleic acid) supplemented diet or a control diet without added oil. SO feeding caused a reduction in the amount of serum and liver triacylglycerols and cholesterol, whereas the level of phospholipids in both tissues was hardly affected. In liver of SO-treated lambs an increase in the levels of C(18:2) and arachidonic acid (C(20:4), omega-6), together with a simultaneous decrease of saturated fatty acids, was observed. In comparison to rat liver, rather low activities of enzymes in the pathway for de novo fatty acid synthesis, i.e. acetyl-CoA carboxylase and fatty acid synthase, were found in lamb-liver cytosol. Both enzyme activities, as well as those of the NADPH-furnishing enzymes, were significantly reduced by SO feeding. In contrast, microsomal and especially mitochondrial fatty acid chain elongation activity, the latter being much higher than that of rat liver, were significantly increased in SO-treated lambs. In these animals, a stimulation of triangle up(9)-desaturase activity was observed in liver microsomes.  相似文献   

13.
The in vitro metabolism of tolbutamide to the hydroxymethyl derivative was studied using hepatic microsomal homogenates. The hydroxymethyl metabolite was quantitated by HPLC. The hepatic microsomal hydroxylase was completely inhibited by carbon monoxide and was NADPH dependent. Metyrapone, alpha-naphthoflavone, phenelzine, mercuric chloride, and nitrogen significantly inhibited the reaction indicating the involvement of the cytochrome P-450 monooxygenase. Species variation showed that the order of hepatic microsomal activity was rat greater than rabbit much greater than guinea pig much greater than mouse and hamster. The reaction increased with time up to 40 min and followed Michaelis-Menten kinetics in rat liver microsomes with apparent Km and Vmax values of 224.4 microM and 359.9 pmol.mg-1.min-1, respectively. The reaction was induced by phenobarbital but was depressed after pretreatment with 3-methylcholanthrene and isosafrole. However, expression of the hydroxylase activity per nanomoles of cytochrome P-450 showed that the activity was much higher in liver microsomes of isosafrole pretreated rats. These results indicate the involvement of different isozymes of cytochrome P-450 in the microsomal hydroxylation of tolbutamide.  相似文献   

14.
The dehydrogenation reaction of cholest-7-en-3beta-ol (I) to cholesta-5,7-dien-3beta-ol (II) in the presence of NADH was studied in rat liver microsomes and in microsomal acetone powder preparations, using [3alpha-3H]cholest-7-en-3beta-ol. It was found that the reaction was inhibited by menadione, adenosine diphosphate, potassium ferricyanide, and cytochrome c while p-cresol had no effect. These results indicated the participation of a microsomal electron transport system in the dehydrogenation of cholest-7-en-3beta-ol. The conversion of cholest-7-en-3beta-ol to cholesta-5,7-dien-3beta-ol was also observed in the absence of NADH when ascorbic acid was included in the incubation mixture. However, the ascorbic acid-catalyzed dehydrogenation was not inhibited by potassium ferricyanide. Immunological evidence that microsomal cytochrome b5 is involved in the dehydrogenation of (I) to (II) was obtained. Antibodies specific for rat liver microsomal cytochrome b5 were elicited in rabbits. The anticytochrome b5 immunoglobulin fraction inhibited rat liver microsomal NADH-cytochrome c reductase but not NADPH-cytochrome c reductase. Also, the extent of reduction of cytochrome b5 was not affected by the antibodies. The conversion of (I) to (II) by rat liver microsomes was inhibited (73%) by anticytochrome b5 immunoglobulin at a ratio of microsomal protein:immunoglobulin of 1:5.6. These results are consistent with the participation of microsomal cytochrome b5 in the introduction of the C-5 double bond in cholesterol biosynthesis. A close analogy of the microsomal dehydrogenation of fatty acids and of cholest-7-en-3beta-ol is apparent and this suggests a possible similarity in the mechanisms of the two reactions.  相似文献   

15.
cis- and trans-unsaturated fatty acids with 18 carbon atoms (oleic, linoleic, elaidic and linolelaidic acid) inhibited aggregation of washed rabbit platelets stimulated with collagen, arachidonic acid and U46619 when in the same concentration ranges. Thrombin-induced aggregation was not affected by any of them. Saturated fatty acid (stearic acid) had no effect on this response. The inhibition is independent of the induced change in membrane fluidity, since trans-isomers could not induce the change in fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Unsaturated fatty acids, except linoleic acid, did not interfere with the formation of thromboxane B2 from exogenously added arachidonic acid. All the unsaturated fatty acids only slightly inhibited the arachidonic acid liberation by phospholipase A2 in platelet lysate. This indicates that the unsaturated fatty acids may block a process after formation of thromboxane A2 in response to collagen and arachidonic acid. The increase in phosphatidic acid formation stimulated with U46619 was inhibited dose dependently by each of the unsaturated fatty acids but that stimulated with thrombin was not affected by any of them. Phospholipase C activity measured by diacylglycerol formation in unstimulated platelet lysate was not inhibited by the fatty acids. The elevation of cytosolic free Ca2+ induced by arachidonic acid or U46619 and Ca2+ influx by collagen were inhibited almost completely at the same concentration as that which inhibited their aggregation. These data suggest that the unsaturated fatty acids were intercalated into the membrane and inhibited collagen- and arachidonic acid-induced platelet aggregation by causing a significant suppression of the thromboxane A2-mediated increase in cytosolic free Ca2+, probably due to interference with the receptor-operated Ca2+ channel.  相似文献   

16.
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway.  相似文献   

17.
Changes in microsomal fatty acid composition, delta 9- and delta 6-desaturase activities and cholesterol and phosphorus liver content were studied in dogs fed olive and sunflower oil diets. No changes were observed in the saturated fatty acids between dietary groups. The level of monounsaturated fatty acids was more elevated in animals fed the OO diet, because of its high relative content in this diet although the in vitro delta 9-desaturase activity was similar in microsomes from the two groups. The proportion of arachidonic acid was similar in SO and OO fed animals. This similar level occurred despite a significant increase in the level of linoleic acid in membrane lipids as a result of feeding the SO supplement. The in vitro delta 6-desaturase activity in liver microsomes showed no differences between dogs fed the two diets. Thus, the higher desaturation presented in vivo by microsomes from OO group may be related to the inhibition by linoleic acid of delta 6-desaturase in dogs fed the SO diet. The polyunsaturated fatty acids (PUFA) from the n-3 series were higher in microsomal phosphatidylcholine and phosphatidylethanolamine from animals fed the OO supplemented diet. The cholesterol/phosphorus molar ratio was higher in the SO group in which the unsaturation index was only slightly affected in phospholipids.  相似文献   

18.
Chromate metabolism in liver microsomes   总被引:3,自引:0,他引:3  
The carcinogenicity and mutagenicity of various chromium compounds have been found to be markedly dependent on the oxidation state of the metal. The carcinogen chromate was reduced to chromium(III) by rat liver microsomes in vitro. Metabolism of chromate by microsomal enzymes occurred only in the presence of either NADPH or NADH as cofactor. The chromium(III) generated upon metabolism formed a complex with the NADP+ cofactor. Significant binding of chromium to DNA occurred only when chromate was incubated in the presence of microsomes and NADPH. Specific inhibitors of the mixed function oxidase enzymes, 2′-AMP, metyrapone, and carbon monoxide, inhibited the rate of reduction of chromate by microsomes and NADPH. The possible relationship of metabolism of chromate and its interaction with nucleic acids to its carcinogenicity and mutagenicity is discussed.  相似文献   

19.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) when added to suspensions of rat hepatic microsomes in the presence of NADPH has little influence on the peroxidation of microsomal lipids unless the system also contains complexed ferric ion, in which case TCDD stimulates. This stimulation does not appear to require metabolism of the TCDD. Peroxidation was monitored by production of thiobarbiturate-reactive substances (malondialdehyde and dienals), production of conjugated dienes, and disappearance of polyunsaturated fatty acids. Stimulation of lipid peroxidation by TCDD in a mixed lysosome-microsome preparation resulted in significantly decreased 'leakage' of acid phosphatase into the medium, implying an effect on lysosomal membranes. Consideration both of the present results and data in the literature leads to the conclusion that it is premature to attempt to define the relationship between enzyme induction, lipid peroxidation and TCDD lethality.  相似文献   

20.
The fatty acid composition of cultured Friend erythroleukemia cells was modified by supplementation of the medium with oleic or linoleic acid. There was a 30% reduction in saturated and a 35% reduction in polyunsaturated fatty acids in microsomal phospholipids when the cells were grown in media supplemented with oleic acid, and a 3-fold increase in polyunsaturated fatty acids when the cells were grown in linoleic acid-supplemented media. Electron-spin resonance studies with the 5-nitroxystearate probe demonstrated that there was no appreciable change in microsomal lipid mobility as measured by the order parameters. In contrast, changes in lipid mobility were detected with the spin-label probe when microsomes were first isolated from Friend erythroleukemia cells and subsequently modified by incubation with liposomes composed of either dioleoyl- or dilinoleoylphosphatidylcholine plus bovine liver phospholipid-exchange protein. The fatty acid compositional changes produced in these microsomes were similar to those obtained when the intact cells were grown in media containing supplemental fatty acids. These findings indicate that the lipid mobility of Friend cell microsomes can be altered by phospholipid replacements in vitro, but that this does not occur when similar microsomal fatty acid modifications are produced during culture of the intact cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号