首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improvements are made to our gas-chromatography-mass-spectrometry-based assay for quantifying low levels of DNA-uracil. Folate deficiency leads to increased deoxyuridine monophosphate/thymidylate (dUMP/dTMP) ratios and uracil misincorporation into DNA, which may increase cancer risk. Vitamin B6 (B6) deficiency might also result in increased DNA-uracil because B6 is a cofactor for serine hydroxymethyltransferase, which catalyzes the methylation of tetrahydrofolate (THF) to methylene-THF, the folate form that is required to convert dUMP to dTMP. However, the low baseline levels of DNA-uracil in healthy human lymphocytes are difficult to measure accurately. This version of the assay (Uracil assay V3) has an approximately 10-fold increase in signal strength over the previous method and a 10-fold lower detection limit (0.2 pg uracil). Five micrograms of DNA, the amount in about 1 ml of human blood, is a suitable amount for this assay. Using this improved assay, DNA-uracil was measured in lymphocytes from 12 healthy smoking or nonsmoking young men and women who consumed a B6-restricted diet (0.7 mg B6/day, or approximately half the recommended dietary allowance) for 28 days. DNA-uracil concentration was not significantly related to B6 status or smoking. More severe and/or prolonged B6 deficiency may be necessary to detect significant changes in DNA-uracil in humans. The average concentration of DNA-uracil in these subjects was found to be approximately 3,000 uracils per diploid lymphocyte, which is comparable to steady state levels of one of the oxidative adducts of DNA, 8-oxoguanine.  相似文献   

2.
Low dietary folate is associated with increased risk of colorectal cancer. In earlier work, we showed that folate deficiency induced intestinal tumors in BALB/c but not C57Bl/6 mice through increased dUTP incorporation into DNA with consequent DNA damage. To determine whether strain differences between one-carbon metabolism and DNA repair pathways could contribute to increased tumorigenesis in BALB/c mice, we measured amino acids and folate in the normal intestinal tissue of both strains fed a control diet or a folate-deficient diet. We also determined the expression of critical folate-metabolizing enzymes and several DNA repair enzymes. BALB/c mice had lower intestinal serine (major cellular one-carbon donor), methionine and total folate than C57Bl/6 mice under both dietary conditions. BALB/c mice had higher messenger RNA and protein levels of three folate-interconverting enzymes: trifunctional methyleneTHF (5,10-methylenetetrahydrofolate) dehydrogenase–methenylTHF cyclohydrolase–formylTHF (10-formyltetrahydrofolate) synthetase 1, bifunctional methyleneTHF dehydrogenase–methenylTHF cyclohydrolase and methylenetetrahydrofolate reductase. This pattern of expression could limit the availability of methyleneTHF for conversion of dUMP to dTMP. BALB/c mice also had higher levels of uracil DNA glycosylase 2 protein without an increase in the rate-limiting DNA polymerase β enzyme, compared with C57Bl/6 mice. We conclude that BALB/c mice may be more prone to DNA damage through decreased amounts of one-carbon donors and the diversion of methyleneTHF away from the conversion of dUMP to dTMP. In addition, incomplete excision repair of uracil in DNA could lead to accumulation of toxic repair intermediates and promotion of tumorigenesis in this tumor-susceptible strain.  相似文献   

3.
Folate is required for one-carbon transfer reactions and the formation of purines and pyrimidines for DNA and RNA synthesis. Deficiency of folate can lead to many clinical abnormalities, including macrocytic anemia, cardiovascular diseases, birth defects, and carcinogenesis. The nucleotide imbalance due to folate deficiency causes cell cycle arrest in the S phase and uracil misincorporation into DNA, which may result in DNA double-strand breaks during repair. The role of folate in the immune system has not been fully characterized. We cultured PHA-activated human T lymphocytes in varying concentrations of folate, and measured proliferation, cell cycle, apoptosis, uracil misincorporation, and proportions of Th cells (CD4(+)) and cytotoxic T (CD8(+)) cells. Folate deficiency reduced proliferation of T lymphocytes, induced cell cycle arrest in the S phase, induced apoptosis, and increased the level of uracil in DNA. Folate deficiency also increased the CD4(+) to CD8(+) ratio due to a marked reduction of CD8(+) cell proliferation. Folate or nucleoside repletion of folate-deficient cells rapidly restored T lymphocyte proliferation and normal cell cycle, reduced the DNA uracil content, and lowered the CD4(+) to CD8(+) ratio. These data suggest that folate status may affect the immune system by reducing the capacity of CD8(+) cells to proliferate in response to activation.  相似文献   

4.
The role of folic acid and Vitamin B12 in genomic stability of human cells   总被引:28,自引:0,他引:28  
Fenech M 《Mutation research》2001,475(1-2):57-67
Folic acid plays a critical role in the prevention of chromosome breakage and hypomethylation of DNA. This activity is compromised when Vitamin B12 (B12) concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation and DNA hypomethylation. In vivo studies show that Vitamin B12 deficiency and elevated plasma homocysteine are significantly correlated with increased micronucleus formation. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is >227nmol/l. Intervention studies in humans show: (a) that DNA hypomethylation, chromosome breaks, uracil misincorporation and micronucleus formation are minimised when red cell folate concentration is >700nmol/l folate; and (b) micronucleus formation is minimised when plasma concentration of Vitamin B12 is >300pmol/l and plasma homocysteine is <7.5micromol/l. These concentrations are achievable at intake levels in excess of current RDIs i.e. more than 200-400microgram folic acid per day and more than 2microgram Vitamin B12 per day. A placebo-controlled study with a dose-response suggests that based on the micronucleus index in lymphocytes, an RDI level of 700microgram/day for folic acid and 7microgram/day for Vitamin B12 would be appropriate for genomic stability in young adults. Dietary intakes above the current RDI may be particularly important in those with extreme defects in the absorption and metabolism of these Vitamins, for which ageing is a contributing factor.  相似文献   

5.
Fenech M 《Mutation research》2012,733(1-2):21-33
Folate plays a critical role in the prevention of uracil incorporation into DNA and hypomethylation of DNA. This activity is compromised when vitamin B12 concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation, DNA hypomethylation and mitochondrial DNA deletions. In vivo studies show that folate and/or vitamin B12 deficiency and elevated plasma homocysteine (a metabolic indicator of folate deficiency) are significantly correlated with increased micronucleus formation and reduced telomere length respectively. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is greater than 100nmol/L. Intervention studies in humans show (a) that DNA hypomethylation, chromosome breaks, uracil incorporation and micronucleus formation are minimised when red cell folate concentration is greater than 700nmol/L and (b) micronucleus formation is minimised when plasma concentration of vitamin B12 is greater than 300pmol/L and plasma homocysteine is less than 7.5μmol/L. These concentrations are achievable at intake levels at or above current recommended dietary intakes of folate (i.e. >400μg/day) and vitamin B12 (i.e. >2μg/day) depending on an individual's capacity to absorb and metabolise these vitamins which may vary due to genetic and epigenetic differences.  相似文献   

6.
Dynamical modeling is an accurate tool for describing the dynamic regulation of one-carbon metabolism (1CM) with emphasis on the alteration of DNA methylation and/or dUMP methylation into dTMP. Using logic programming we present a comprehensive and adaptative mathematical model to study the impact of folate deficiency, including folate transport and enzymes activities. 5-Methyltetrahydrofolate (5mTHF) uptake and DNA and dUMP methylation were studied by simulating nutritional 5mTHF deficiency and methylenetetrahydrofolate reductase (MTHFR) gene defects. Both conditions had distinct effects on 1CM metabolite synthesis. Simulating severe 5mTHF deficiency (25% of normal levels) modulated 11 metabolites. However, simulating a severe decrease in MTHFR activity (25% of normal activity) modulated another set of metabolites. Two oscillations of varying amplitude were observed at the steady state for DNA methylation with severe 5mTHF deficiency, and the dUMP/dTMP ratio reached a steady state after 2 h, compared to 2.5 h for 100% 5mTHF. MTHFR activity with 25% of V(max) resulted in an increased methylated DNA pool after half an hour. We observed a deviation earlier in the profile compared to 50% and 100% V(max). For dUMP methylation, the highest level was observed with 25%, suggesting a low rate of dUMP methylation into dTMP with 25% of MTHFR activity. In conclusion, using logic programming we were able to construct the 1CM for analyzing the dynamic system behavior. This model may be used to refine biological interpretations of data or as a tool that can provide new hypotheses for pathogenesis.  相似文献   

7.
We have shown that DNA polymerase beta, the only nuclear DNA polymerase present in adult neurons, cannot discriminate between dTTP and dUTP, having the same Km for both substrates. This fact suggests that during reparative DNA synthesis, in adult neurons, dUMP residues can be incorporated into DNA. Since uracil DNA-glycosylase functions to prevent the mutagenic effects of uracil in DNA coming as a product of deamination of cytosine residues or as a result of dUMP incorporation by DNA polymerase, we have studied the perinatal activity of uracil DNA-glycosylase and of 2 enzymes (nucleoside diphosphokinase and dUTPase) involved in dUTP metabolism. Our data indicate that during neuronal development there is a rapid decrease in uracil DNA-glycosylase which could impair the removal of uracil present in DNA in adult neurons. However, misincorporation of dUMP into DNA might be kept to a low frequency by the action of dUTPase present at all developmental stages.  相似文献   

8.
The mechanism by which folate deficiency influences carcinogenesis is not well established, but a phenotype of DNA strand breaks, mutations, and chromosomal instability suggests an inability to repair DNA damage. To elucidate the mechanism by which folate deficiency influences carcinogenicity, we have analyzed the effect of folate deficiency on base excision repair (BER), the pathway responsible for repairing uracil in DNA. We observe an up-regulation in initiation of BER in liver of the folate-deficient mice, as evidenced by an increase in uracil DNA glycosylase protein (30%, p < 0.01) and activity (31%, p < 0.05). However, no up-regulation in either BER or its rate-determining enzyme, DNA polymerase beta (beta-pol) is observed in response to folate deficiency. Accordingly, an accumulation of repair intermediates in the form of DNA single strand breaks (37% increase, p < 0.03) is observed. These data indicate that folate deficiency alters the balance and coordination of BER by stimulating initiation without subsequently stimulating the completion of repair, resulting in a functional BER deficiency. In directly establishing that the inability to induce beta-pol and mount a BER response when folate is deficient is causative in the accumulation of toxic repair intermediates, beta-pol-haploinsufficient mice subjected to folate deficiency displayed additional increases in DNA single strand breaks (52% increase, p < 0.05) as well as accumulation in aldehydic DNA lesions (38% increase, p < 0.01). Since young beta-polhaploinsufficient mice do not spontaneously exhibit increased levels of these repair intermediates, these data demonstrate that folate deficiency and beta-pol haploinsufficiency interact to increase the accumulation of DNA damage. In addition to establishing a direct role for beta-pol in the phenotype expressed by folate deficiency, these data are also consistent with the concept that repair of uracil and abasic sites is more efficient than repair of oxidized bases.  相似文献   

9.
We have recently demonstrated that mammalian uracil-DNA glycosylase activity is undetectable in adult neurons. On the basis of this finding we hypothesized that uracil, derived either from oxidative deamination of cytosine or misincorporation of dUMP in place of dTMP during DNA repair by the unique nuclear DNA polymerase present in adult neurons, DNA polymerase β, might accumulate in neuronal DNA. Uracil residues could also arise in the herpes simplex 1 (HSV1) genome during latency in nerve cells. We therefore suggest a role for the virus encoded uracil-DNA glycosylase in HSV1 reactivation and in the first steps of DNA replication. We show here 1) that the viral DNA polymerase incorporates dUTP in place of dTTP with a comparable efficiencyin vitro; 2) that virus specific DNA/protein interactions between the virus encoded origin binding protein and its target DNA sequence is altered by the presence of uracil residues in its central region TCGCA. Thus uracil, present in viral OriS or other key sequences could hamper the process leading to viral reactivation. Hence, HSV1 uracil-DNA glycosylase, dispensable in viral proliferation in tissue culture, could be essential in neurons for the “cleansing” of the viral genome of uracil residues before the start of replication.  相似文献   

10.
Porcine liver DNA polymerase gamma has been demonstrated to preferentially incorporate dTMP over dUMP during in vitro DNA synthesis. When polymerase activity was measured in standard reactions containing saturating levels of either dTTP or dUTP, the polymerization rate was slightly faster in the reaction containing dTTP. However, under conditions where both dTTP and dUTP competed, at an equal molar concentration, approximately 3-times more thymine residues were incorporated than uracil residues into DNA. Similarly, preferential incorporation of dTMP was observed on several substrates including poly (dA).oligo p(dT), poly (rA).oligo p(dT) and poly (dA-dT). The discrimination against dUMP incorporation was even more apparent with reduced levels of dUTP. These observations were consistent with the finding that the Km for DNA polymerase gamma was about 3-fold lower for dTTP (0.4 microM) than for dUTP (1.1 microM). On the other hand, the Vmax for these two reactions was very similar. Discrimination against dUMP incorporation was also observed during inhibition of polymerase gamma by dideoxyribonucleoside triphosphates. Dideoxythymidine triphosphate preferentially inhibited dUMP incorporation compared to that of dTMP, whereas ddATP, ddCTP and ddGTP inhibited both reactions equally.  相似文献   

11.
The causal metabolic pathway and the underlying mechanism between folate deficiency and neural tube defects (NTDs) remain obscure. Thymidylate (dTMP) is catalyzed by thymidylate synthase (TS) using the folate-derived one-carbon unit as the sole methyl donor. This study aims to examine the role of dTMP biosynthesis in the development of neural tube in mice by inhibition of TS via a specific inhibitor, raltitrexed (RTX). Pregnant mice were intraperitoneally injected with various doses of RTX on gestational day 7.5, and embryos were examined for the presence of NTDs on gestational day 11.5. TS activity and changes of dUMP and dTMP levels were measured following RTX treatment at the optimal dose. DNA damage was determined by detection of phosphorylated replication protein A2 (RPA2) and γ-H2AX in embryos with NTDs induced by RTX. Besides, apoptosis and proliferation were also analyzed in RTX-treated embryos with NTDs. We found that NTDs were highly occurred by the treatment of RTX at the optimal dose of 11.5 mg/kg b/w. RTX treatment significantly inhibited TS activity. Meanwhile, dTMP was decreased associated with the accumulation of dUMP in RTX-treated embryos. Phosphorylated RPA2 and γ-H2AX were significantly increased in RTX-treated embryos with NTDs compared to control. More apoptosis and decreased proliferation were also found in embryos with NTDs induced by RTX. These results indicate that impairment of dTMP biosynthesis caused by RTX led to the development of NTDs in mice. DNA damage and imbalance between apoptosis and proliferation may be potential mechanisms.  相似文献   

12.
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in eukaryotes and prokaryotes [1][2][3]. This enzyme removes uracil bases that are present in DNA as a result of either deamination of cytosine or misincorporation of dUMP instead of dTMP [4] [5], and it is the primary activity in the DNA base excision repair pathway. Although UDG activities have been shown to be present in several thermophiles [6][7][8], no sequences have been found that are complementary to the Escherichia coli ung gene, which encodes UDG [9]. Here, we describe a UDG from the thermophile Thermotoga maritima. The T. maritima UDG gene has a low level of homology to the E. coli G-T/U mismatch-specific DNA glycosylase gene (mug). The expressed protein is capable of removing uracil from DNA containing either a U-A or a U-G base pair and is heat-stable up to 75 degrees C. The enzyme is also active on single-stranded DNA containing uracil. Analogous genes appear to be present in several prokaryotic organisms, including thermophilic and mesophilic eubacteria as well as archaebacteria, the human-disease pathogens Treponema palladium and Rickettsia prowazekii, and the extremely radioresistant organism Deinococcus radiodurans. These findings suggest that the T. maritima UDG is a member of a new class of DNA repair enzymes.  相似文献   

13.
Changes in the folate and vitamin B12 status in the body influence the extent of uracil misincorporation (UrMis) into DNA, which is one of the biomarkers of genomic stability and, thus, portends a risk of cancer. In our study, the level of UrMis into DNA was evaluated by the comet assay (using the specific DNA repair enzyme, uracil DNA glycosylase) in leukocytes from blood donated by healthy young women with positive folate balance achieved by 4 weeks of folic acid supplementation (400 microg/day). The nutritional status was evaluated on the basis of nine food diaries recorded by the subjects during two winter months. The data were computerized, and the intake of nutrients and micronutrients was estimated using the DIETA 2 program (Food and Nutrition Institute, Warsaw, Poland) linked to recently updated Polish food tables. The plasma folate and vitamin B12 concentration, as well as methylenetetrahydrofolate reductase (MTHFR) polymorphisms, were evaluated to determine their influence on the level of UrMis into DNA. The mean value of B12 intake for all subjects reached 100% of the Polish recommended dietary allowances (RDA), whereas the mean value of folate intake, before folate supplementation, was 50%, suggesting moderate deficiency. Folic acid supplementation brought the folate intake way above the RDA, and plasma folate concentration in each individual was above the deficient range (mean value 14.67 ng/ml). The UrMis did not correlate with the plasma folate concentration, but the level of UrMis was significantly lower in subjects with plasma vitamin B12 concentration above 400 pg/ml (P=.02) only after folic acid supplementation. The concentration of folate in plasma correlated (P相似文献   

14.
The biosynthesis of 2'-deoxyuridine monophosphate (dUMP) has been studied in a cytidine- and uracil-requiring mutant of Salmonella typhimurium (DP-55). The dUMP pool and the thymidine monophosphate (dTMP) pool of DP-55, grown in the presence of (3)H-uracil and unlabeled cytidine, are found to have the same specific activities. However, only 30% of the dUMP and the dTMP is synthesized from a uridine nucleotide. Seventy per cent is derived directly from a cytosine compound. The identification and partial purification of a Mg(2+)-dependent 2'-deoxycytidine triphosphate (dCTP) deaminase from S. typhimurium suggests that the combined action of dCTP deaminase and 2'-deoxyuridine triphosphate pyrophosphatase accounts for 70% of the dUMP, and therefore the dTMP, synthesized in vivo. The introduction of a thymine requirement (i.e., a block in thymidylate synthetase) into DP-55 results in a 100-fold increase in the size of the dUMP pool. However, the relative contribution of the uridine and cytidine pathways to dUMP synthesis is unaltered. The high dUMP pool is accompanied by extensive catabolism of dUMP to uracil. Partial thymine starvation of the cells results in a significant increase in the dUMP and dCTP pools. Moreover, an increase in the contribution of the dCTP pathway to dUMP synthesis is observed. As a result of these changes the catabolism of dUMP to uracil is augmented.  相似文献   

15.
The formation of covalent binary complexes of thymidylate synthase and its nucleotide substrate dUMP, product dTMP, and inhibitor, 5-fluorodeoxyuridylate (FdUMP) was investigated using the trichloroacetic acid precipitation method. It was observed that, in addition to FdUMP, both dUMP and dTMP were capable of covalent interactions with the enzyme in the absence of added folates. The presence of folate, dihydrofolate, or tetrahydrofolate (H4folate) was found to produce substantial enhancements in the covalent binding of both FdUMP and dUMP to the enzyme with H4folate being the most effective agent. Further, covalent binary complexes of the enzyme with the three radiolabeled nucleotides were isolated by trichloroacetic acid precipitation and subjected to CNBr cleavage. The active-site CNBr peptide was isolated by reverse phase high performance liquid chromatography, and the first five N-terminal amino acid residues were sequenced by the dansyl-Edman procedure. Each active site peptide obtained from the covalent binary complexes as well as that from the covalent inhibitory ternary complex formed from enzyme, FdUMP, and 5,10-methylene-H4folate exhibited an identical sequence of Ala-Leu-Pro-Pro-(X)-, and the 5th amino acid was found to be associated with radiolabeled nucleotide ligand. Dansyl-Edman sequence analysis of the active site CNBr peptide, derived from enzyme which had been treated with iodoacetic acid, gave a sequence of Ala-Leu-Pro-Pro-CmCys (where CmCys is carboxymethylcysteine), thus confirming the fact that the fifth residue from the N terminus is Cys-198. In all the cases, the active site Cys-198 residue was found to be covalently linked to the nucleotides. These results provide unequivocal proof that the covalent binary complexes of enzyme with dUMP and dTMP predicted in the catalytic reaction mechanism actually exist.  相似文献   

16.
Uracil in DNA arises by misincorporation of dUMP during replication and by hydrolytic deamination of cytosine. This common lesion is actively removed through a base excision repair (BER) pathway initiated by a uracil DNA glycosylase (UDG) activity that excises the damage as a free base. UDGs are classified into different families differentially distributed across eubacteria, archaea, yeast, and animals, but remain to be unambiguously identified in plants. We report here the molecular characterization of AtUNG (Arabidopsis thaliana uracil DNA glycosylase), a plant member of the Family-1 of UDGs typified by Escherichia coli Ung. AtUNG exhibits the narrow substrate specificity and single-stranded DNA preference that are characteristic of Ung homologues. Cell extracts from atung−/− mutants are devoid of UDG activity, and lack the capacity to initiate BER on uracil residues. AtUNG-deficient plants do not display any apparent phenotype, but show increased resistance to 5-fluorouracil (5-FU), a cytostatic drug that favors dUMP misincorporation into DNA. The resistance of atung−/− mutants to 5-FU is accompanied by the accumulation of uracil residues in DNA. These results suggest that AtUNG excises uracil in vivo but generates toxic AP sites when processing abundant U:A pairs in dTTP-depleted cells. Altogether, our findings point to AtUNG as the major UDG activity in Arabidopsis.  相似文献   

17.
Folate deficiency and pancreatic acinar cell function   总被引:1,自引:0,他引:1  
The present study was designed to determine the effect of folate deficiency on pancreatic acinar cell function. In the first series of experiments, three groups of rats were fed ad libitum regular rat feed, folate-deficient diet, or an equivalent amount of folate-sufficient diet. In the second series of experiments, rats were either fed ad libitum or rendered folate deficient by a purified folate-deficient diet; half of the folate-deficient group was replenished with oral folate. Body weight, pancreatic weight, DNA [methyl-14C]thymidine incorporation into DNA, RNA, [8-14C]adenine incorporation into RNA, protein content, synthesis of proteins, amylase content, and basal and bethanechol-stimulated amylase secretion were determined. The parameters were the same in the rats fed a folate-sufficient diet as in those fed a regular rat feed. Feeding a folate-deficient diet resulted in impaired DNA synthesis as evidenced by diminished incorporation of [methyl-14C]thymidine into DNA. There was no change in secretion of amylase. Similar results were obtained in the second series of experiments. These studies indicate that folate deficiency (rather than antibiotic content of the diet) impaired pancreatic function. Folate deficiency may therefore contribute to pancreatic injury in malnutrition and alcoholism.  相似文献   

18.
Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity.  相似文献   

19.
S Boiteux  J Laval 《Biochemistry》1982,21(26):6746-6751
Heat treatment of poly(deoxycytidylic acid)-[poly(dC)] induces the formation of dUMP residues, which code for dAMP when replicated by Escherichia coli DNA polymerases I and III. The specificity of dUMP coding properties is indicated by the quantitative relation between the dAMP incorporated and the frequency of dUMP residues in the heat-treated poly(dC). The dAMP incorporation is prevented by preincubation of uracil containing poly(dC) with uracil-DNA glycosylase. The excision of uracil by uracil-DNA glycosylase leads to the formation of apyrimidinic sites (AP sites), which are barely replicated in vitro under physiological conditions. However, the alteration of E. coli DNA polymerase I fidelity of replication by Mn2+ greatly stimulates the replication of AP sites. There is a preferential incorporation of dAMP, as compared to dTMP, opposite the AP sites. The dAMP incorporation is prevented by preincubation of poly(dC) containing AP sites with Micrococcus luteus AP endonuclease B. The results show a close association between DNA repair by base excision and the prevention of mutagenic processes in vitro. Furthermore, since the alteration of DNA polymerase fidelity allows some replication of the noncoding DNA lesion (AP site), this could imply a role in SOS-induced mutagenesis in vivo.  相似文献   

20.
By measuring the specific activity of deoxyribonucleotides isolated from DNA after the incorporation of 14C-labeled precursors with and without competition from other nucleotide precursors, we defined the major pathways of pyrimidine deoxyribonucleotide synthesis in Mycoplasma mycoides subsp. mycoides. Uracil, guanine, and thymine are required for the synthesis of nucleotides. Cytidine competed effectively with uracil to provide all of the deoxycytidine nucleotide, as well as most of the deoxyribose-1-phosphate, for the synthesis of thymidylate from thymine via thymidine phosphorylase. Each of dUMP, dCMP, and dTMP competed with cytidine for incorporation into DNA thymidylate. Appreciable incorporation of exogenous deoxyribonucleoside 5'-monophosphates into DNA without prior dephosphorylation was observed. Dephosphorylation also occurred since the added deoxyribonucleotide provided phosphate for the synthesis of the other nucleotides in DNA in competition with the 32Pi in the growth medium. Hydroxyurea inhibited cell growth and decreased the intracellular level of dATP, consistent with the action of a ribonucleoside diphosphate reductase with regulatory properties similar to those of the Escherichia coli enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号