首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we propose a new staining method for free sulfhydryl groups of proteins after having separated native samples by thin-layer isoelectric focusing (IEF) in absence of detergents. A comparison was made between proteins stained purple for free sulfhydryl groups (SH) and proteins stained blue by Coomassie blue (CB). A stainability factor, F = %SH/%CB, was calculated for each protein. The Bio-Rad IEF standards containing seven marker proteins for pH scale determination were stained purple, in the same way as they were designed for CB staining. To prove the validity of the currently proposed staining method for a defined protein system such as the eye lens crystallins, these proteins were also stained after IEF as described above. The factor F was calculated for all alpha-, beta-, and gamma-crystallin components that stained in both methods. We discovered that alpha-crystallins contained comparatively high amounts of free SH groups, while some beta- and gamma-crystallin components also contained considerable amounts of free SH groups. The SH staining procedure with 2,2'-dihydroxy-6,6'-dinaphthyl disulfide applied after IEF appeared to be useful, specific, and reproducible.  相似文献   

2.
The disulfide content of calf gamma-crystallin   总被引:5,自引:0,他引:5  
The disulfide content of calf gamma-crystallin polypeptides has been investigated. The gamma-crystallin fraction of the soluble lens proteins was separated into five distinct polypeptides and characterized by isoelectric focusing, amino acid composition, and N-terminal sequence analysis to 25 residues. It has been demonstrated that 7 cysteines are present in gamma II, 4 to 5 cysteines in gamma IIIa, gamma IIIb, and gamma IV, and 6 cysteines in gamma I (beta s). Reduction of the total gamma-crystallin fraction with DTT resulted in an increase of approximately 1 to 1.5 mol of free SH per mole of protein. This increase in sulfhydryls was demonstrated to be contributed primarily by gamma II, the major polypeptide representing 50% of the total gamma-crystallin, which showed an increase of approximately 2.5 mol of sulfhydryl per mole of protein upon reduction. Insignificant disulfide content was present in gamma III and gamma IV and only a slight amount of disulfide was found in gamma I (beta s). The observed increase in sulfhydryl content upon reduction was not due to the presence of mixed disulfides of 2-mercaptoethanol, glutathione, or cysteine. The data are consistent with approximately 1 mol of intramolecular disulfide per mole of protein being present in gamma II. X-ray crystallography of gamma II has shown that the spatial location of Cys18 and Cys22 in the tertiary structure permits disulfide bond formation. Sequence analysis of the four major polypeptides of gamma-crystallin, gamma II, gamma IIIa, gamma IIIb, and gamma IV indicates that only gamma II has both Cys18 and Cys22. Cys18 is present in gamma IIIa, gamma IIIb, and gamma IV but Cys22 is replaced by His22. It is probable that the lack of disulfide in gamma IIIa, gamma IIIb, and gamma IV is due to the absence of Cys22.  相似文献   

3.
M E Holtzer  K Askins  A Holtzer 《Biochemistry》1986,25(7):1688-1692
Equilibrium thermal denaturation curves (by circular dichroism) are reported for doubly cross-linked beta beta tropomyosin two-chain coiled coils. Cross-linking was performed by reaction of sulfhydryls with either ferricyanide or 5,5'-dithiobis(2-nitrobenzoate) (NbS2). The extent of reaction was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and either by titration of residual sulfhydryls with NbS2 (ferricyanide cross-linking) or by determination of mixed disulfide (protein-S-SbN) through reaction with dithiothreitol (NbS2 cross-linking). The results indicate approximately 90% conversion to molecules with interchain cross-links at both C-36 and C-190. Thermal unfolding curves are compared with those obtained previously for non-cross-linked species. The curves are indistinguishable up to approximately 40 degrees C. Above approximately 40 degrees C, the doubly cross-linked species is more stable, but the transition is less steep. This relationship is also compared with that found between alpha alpha tropomyosin (a similar coiled coil made of a genetic variant chain having a sulfhydryl only at C-190) and its singly cross-linked derivative. Thermal curves for alpha alpha and beta beta non-cross-linked species are very similar, alpha alpha being somewhat more stable. For cross-linked alpha alpha, however, the curve sags at temperatures somewhat below the region of principal cooperative loss of helix, the latter occurring at higher temperature but with the same steepness as in the non-cross-linked case. The sag has been ascribed to a "pretransition" in the region of C-190. Thus, doubly and singly cross-linked species differ in that the former show no pretransition and decreased steepness in the principal transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Bis(maleidophenyl)-PEG2000 (Bis-Mal-PEG2000), a new bifunctional protein cross-linker targeted to sulfhydryl groups, introduces intra-tetrameric cross-links into oxy-HbA in nearly quantitative yields. Structural as well as crystallographic analyses of the cross-linked species, Bis-Mal-PEG2000 HbA, identified Cys-93(beta) as the site of intramolecular cross-linking. The cross-bridging had only a limited influence on the O(2) affinity and cooperativity of HbA in 50 mM BisTris acetate, pH 7.4. However, the Bohr effect was reduced by approximately 60%. Bis-Mal-PEG2000 HbA retained sensitivity to the presence of allosteric effectors 2, 3-diphosphoglycerate, IHP, and chloride, albeit to a lesser degree compared with HbA. Crystallographic analysis revealed the overall structure of deoxy-Bis-Mal-PEG2000 HbA to be similar to deoxy-HbA but for the loss of the salt bridge between Asp-94(beta) and His-146(beta). The large influence of the cross-bridging on the alkaline Bohr effect of HbA is consistent with the loss of this salt bridge. Unlike the "central cavity cross-bridges" described previously, the cross-link introduced by Bis-Mal-PEG2000 into HbA is an "outside the central cavity cross-bridge." In view of its oxy-conformational specificity and limited influence on O(2) affinity, this new cross-linking strategy holds promise for the stabilization of new designer low O(2) affinity Hbs generated by recombinant DNA technology for applications as Hb based therapeutics.  相似文献   

5.
The positions of the interchain and intrachain disulfide bonds and the glycosylation site in a lectin of the acorn barnacle Megabalanus rosa were determined. The lectin (Mr 140,000) is composed of the same subunit (Mr 22,000) which is cross-linked by disulfide bonds to form a dimer. Intact lectin yielded two fragments, CB1 and CB2, by cleavage with cyanogen bromide. One intrachain and two interchain disulfide bonds were identified as Cys-53-Cys-61, Cys-14-Cys-50' and Cys-50-Cys-14', respectively, by enzymatic digestion and Edman degradation of CB1. Two intrachain disulfide bonds were determined as Cys-78-Cys-168 and Cys-144-Cys-160 by enzymatic digestion of CB2. The two intrachain disulfide bonds are well conserved through all invertebrate lectins and calcium-dependent animal lectins. S-Carboxamidomethylated lectin was digested with Staphylococcus aureus V8 proteinase and separated by reversed-phase HPLC. Glycopeptides were detected by the 4-N,N-dimethylamino-4'-azobenzene sulfonyl hyrazide method. Sequence analyses of the glycopeptides showed that a carbohydrate chain attached to Asn-39.  相似文献   

6.
S Y Shaw  R A Laursen  M B Lees 《FEBS letters》1989,250(2):306-310
The existence of disulfide crosslinks limits the number of possible folded structures a protein can assume. Thus localization of disulfide and thiol groups is a key to understanding the conformation and orientation of myelin proteolipid protein (PLP) in the myelin membrane. [14C]Carboxamidomethylated PLP was fragmented with chymotrypsin, and the resulting mixture was partially separated by reversed-phase HPLC. Purified 14C-labeled peptides and a disulfide containing peptide were characterized by amino acid analysis. These experiments showed that Cys-32 and Cys-34 are free thiols, and are presumably on the interior of the cell or within the membrane bilayer, and that Cys-200 and Cys-219 are joined by a disulfide bond, and are probably located on the extracellular face of the membrane. Sequence analysis experiments indicate that Cys-5, Cys-6 and Cys-9 are linked by disulfides, probably to other parts of the protein on the extracellular face of the membrane.  相似文献   

7.
T Yamaguchi  E Kimoto 《Biochemistry》1992,31(7):1968-1973
Effects of sulfhydryl-reactive reagents on phosphate transport across human erythrocyte membranes were examined using 31P NMR. Phosphate transport was significantly inhibited in erythrocytes treated with sulfhydryl modifiers such as N-ethylmaleimide, diamide, and Cu2+/o-phenanthroline. Quantitation of sulfhydryl groups in band 3 showed that the inhibition is closely associated with the decrease of sulfhydryl groups. Data from erythrocytes treated with diamide or Cu2+/o-phenanthroline demonstrated that intermolecular cross-linking of band 3 by oxidation of a sulfhydryl group, perhaps Cys-201 or Cys-317, decreases the phosphate influx by about 10%. The inhibition was reversed by reduction using dithiothreitol. These results suggest that sulfhydryl groups in the cytoplasmic domain of band 3 may play an important role in the regulation of anion exchange across the membrane.  相似文献   

8.
The small envelope protein of hepatitis B virus is the major component of the viral coat and is also secreted from cells as a 20-nm subviral particle, even in the absence of other viral proteins. Such empty envelope particles are composed of approximately 100 copies of this polypeptide and host-derived lipids and are stabilized by extensive intermolecular disulfide cross-linking. To study the contribution of disulfide bonds to assembly and secretion of the viral envelope, single and multiple mutants involving all 14 cysteines in HepG2 and COS-7 cells were analyzed. Of the six cysteines located outside the region carrying the surface antigen, Cys-48, Cys-65, and Cys-69 were each found to be essential for secretion of 20-nm particles, whereas Cys-76, Cys-90, and Cys-221 were dispensable. By introduction of an additional cysteine substituting serine 58, the yield of secreted particles was increased. Of four mutants involving the eight cysteines located in the antigenic region, only the double mutant lacking Cys-121 and Cys-124 was secreted with wild-type efficiency. Secretion-competent envelope proteins were intracellularly retained by secretion-deficient cysteine mutants. According to alkylation studies, both intracellular and secreted envelope proteins contained free sulfhydryl groups. Disulfide-linked oligomers were studied by gel electrophoresis under nonreducing conditions.  相似文献   

9.
The water-soluble proteins of the bovine lens were separated on a column of Sephadex G-200 into five fractions designated as alpha-, beta1-, beta2-, and gamma-crystallin. Laser Raman scattering studies on these isolated proteins (both in the lyophilized state and in solution) and insoluble albuminoid reveal that they contain predominantly antiparallel pleated sheet structure in the main chains and that sulfhydryl groups are highly localized in gamma-crystallin. This light-scattering technique was also applied to probe the homogeneity of protein structure in the intact lens. The analysis of the scattered light selectively collected from various parts of the lens indicated that these proteins also exist in an antiparallel beta structure throughout the entire lens. However, the central (nucleus) and outer (cortex) portions have somewhat different amino acid composition. Based on the relative intensities of the lines at 624 (phenylalanine) and 644 cm-1 (tyrosine), it is concluded that the nuclear part has the highest concentration of gamma-crystallin and that the content of alpha-crystallin increases significantly from the nucleus to the cortex. By examining the Raman spectra in the 2582 cm-1 and the amide I and III regions, we have demonstrated that the sulfhydryl groups and the beta conformation of the lens proteins are unaffected in the conversion of transparent to totally opaque lens by heat denaturation at 100 degrees. This means that the opacification of a lens does not necessarily involve the oxidation of sulfhydrul groups or conformation changes.  相似文献   

10.
T Hiratsuka 《Biochemistry》1988,27(11):4110-4114
The chemotherapeutic alkylating reagent tris(2-chloroethyl)amine (TCEA) was used as a trifunctional cross-linking reagent with a cross-linking span of 5 A for myosin subfragment 1 (S-1). When S-1 was incubated with TCEA, all three domains of 20, 26, and 50 kDa in the S-1 heavy chain were cross-linked via the highly reactive sulfhydryl group SH1 (Cys-707) on the 20-kDa domain. The cross-linking was accelerated by nucleotides. The present observation is consistent with the proposal that SH1 is close to both the 26- and 50-kDa domains of S-1 and that movement within S-1 associated with the nucleotide binding occurs around SH1 as well as around another reactive thiol, SH2 & Wong, A. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6392-6396; Hiratsuka, T. (1987) Biochemistry 26, 3168-3173].  相似文献   

11.
Passage of F1-ATPase through a centrifuge column [Penefsky, H. S. (1979) Methods Enzymol. 56, 527-530] caused formation of a product with a relative molecular mass of 72,000 as determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The product was identified as cross-linked alpha and delta subunits by using Western blots and subunit-specific monoclonal antibodies. The cross-link was reversed by 50 mM dithiothreitol implying that it was a disulfide bridge. Formation of the cross-link was inhibited by 2 mM EDTA and was stimulated in some buffers by the addition of 10 microM CuCl2. Time course experiments indicated that the majority of the cross-link formed while the enzyme was passing through the column. Thus the cross-link induced by column centrifugation arose from the rapid, heavy-metal-ion-catalysed oxidation of two sulfhydryl groups, one on the alpha subunit and one on the delta subunit, to a disulfide. These results demonstrate that care must be exercised when running proteins through centrifuge columns as potentially deleterious disulfide formation can result. An anti-beta monoclonal antibody was capable of immunoprecipitating the entire enzyme including the cross-linked subunits, implying that the cross-linked alpha and delta subunits were still a part of F1. The formation of the cross-link affected neither the hydrolytic activity of the enzyme nor its susceptibility to inhibition by epsilon subunit. The cross-linked enzyme was unable to bind to F1-depleted membranes in experiments in which soluble F1 and membranes were separated by centrifugation. Column centrifugation did not generate the cross-link on membrane-bound enzyme. These results indicate that the alpha-delta cross-link results in a loss of binding affinity between F1 and F0.  相似文献   

12.
Native tropomyosin from rabbit skeletal muscle (RSTm) consists mainly of alpha alpha and alpha beta coiled coils (alpha/beta approximately 3-4/1). In some extant studies, no beta beta molecules have been found. In this study, RSTm from several different preparations was disulfide cross-linked, both preparation and cross-linking being done under nondenaturing conditions. The cross-linked product was assayed for the presence of beta beta molecules cross-linked at both C36 and C190 (beta = beta). In such cross-linked RSTm, 3-8% beta = beta is detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis, C4 reversed-phase high-performance liquid chromatography, and a free-solution capillary electrophoresis experiment. This percentage becomes approximately 4-10% beta beta when corrected for incomplete double cross-linking and is independent of protein concentration (0.1-10.0 mg/mL), indicating that the observed beta beta species are not artifacts due to intermolecular cross-linking. Upon denaturation and subsequent renaturation either by heating to 55 degrees C or by incubating at 45 degrees C followed by quenching to room temperature, or by guanidine hydrochloride exposure followed by phased renaturation by dialysis, the fraction of beta beta increases, indicating that the reassociation favors homodimer formation somewhat over random association. This result differs from the random association observed when the sulfhydryl on one of the chains is carboxyamidomethylated (Holtzer, M.E., Breiner, T., & Holtzer, A., 1984, Biopolymers 23, 1811-1833), and from the overwhelming heterodimer preferences reported for tropomyosins from other organisms (Lehrer, S.S., Qian, Y., & Hvidt, S., 1989, Science 246, 926-928; Lehrer, S.S. & Qian, Y., 1990, J. Biol. Chem. 265, 1134-1138).  相似文献   

13.
The segmental motions of cross-linked erythrocyte skeletal protein (spectrin-actin-protein 4.1) samples, labeled with nitroxide spin labels, were monitored by conventional first-harmonic and saturation transfer second-harmonic electron paramagnetic resonance methods. Skeletal proteins were extracted from human red blood cells and treated with three oxidative reagents (diamide, hydrogen peroxide, and phenylhydrazine) to cross-link sulfhydryl groups and with one fixative reagent (glutaraldehyde) to cross-link lysine residues. The treatments provided extensive cross-linking between spectrin-actin-protein 4.1 molecules, as determined by gel electrophoresis, and surface charge modification, as determined by pl measurements. However, segmental motions of the cross-linked skeletal proteins remained generally similar to those in normal skeletal proteins. Both the weakly immobilized and the strongly immobilized motions were similar in cross-linked and control samples. Small differences in some motional components were detected. In some cases, faster mobilities were observed, with approximately 5% of the strongly immobilized motions converted to the weakly immobilized motions in the cross-linked samples. It is often believed that the consequence of membrane protein oxidation is restricted protein dynamics, giving membrane rigidity. However, our studies provide needed experimental evidence to indicate that segmental motions are maintained with very little modification even in the presence of extensive cross-linking. Thus cross-linking does not restrict the internal molecular flexibility that gives rise to segmental motions.  相似文献   

14.
Li B  Wei XJ  Sun JL  Xu SY 《Carbohydrate research》2006,341(9):1135-1146
A fucoidan, obtained from the hot-water extract of the brown seaweed, Hizikia fusiforme, was separated into five fractions by DEAE Sepharose CL-6B and Sepharose CL-6B column chromatography. All five fractions contained predominantly fucose, mannose and galactose and also contained sulfate groups and uronic acid. The fucoidans had MWs from 25 to 950 kDa. The structure of fraction F32 was investigated by desulfation, carboxyl-group reduction, partial hydrolysis, methylation analysis and NMR spectroscopy. The results showed that the sugar composition of F32 was mainly fucose, galactose, mannose, xylose and glucuronic acid; sulfate was 21.8%, and the MW was 92.7 kDa. The core of F32 was mainly composed of alternating units of -->2)-alpha-D-Man(1--> and -->4)-beta-D-GlcA(1-->, with a minor portion of -->4)-beta-D-Gal(1--> units. The branch points were at C-3 of -->2)-Man-(1-->, C-2 of -->4)-Gal-(1--> and C-2 of -->6)-Gal-(1-->. About two-thirds of the fucose units were at the nonreducing ends, and the remainder were (1-->4)-, (1-->3)- and (1-->2)-linked. About two-thirds of xylose units were at the nonreducing ends, and the remainder were (1-->4)-linked. Most of the mannose units were (1-->2)-linked, and two-thirds of them had a branch at C-3. Galactose was mainly (1-->6)-linked. The absolute configurations of the sugar residues were alpha-D-Manp, alpha-L-Fucp, alpha-D-Xylp, beta-D-Galp and beta-D-GlcpA. Sulfate groups in F32 were at C-6 of -->2,3)-Man-(1-->, C-4 and C-6 of -->2)-Man-(1-->, C-3 of -->6)-Gal-(1-->, C-2, C-3 or C-4 of fucose, while some fucose had two sulfate groups. There were no sulfate groups in either the GlcA or xylose residues.  相似文献   

15.
A 39/34-kilodalton (kDa) monomeric dispase fragment of von Willebrand factor (vWF) has been purified by heparin affinity chromatography. Detailed structural analysis of the individual 39- and 34-kDa fragments indicated that they had identical amino acid sequences extending from Leu-480/Val-481 to Gly-718 with an intramolecular disulfide bond between Cys-509 and Cys-695. In addition to the binding site for heparin, the 39/34-kDa fragment also contained binding sites for collagen and for platelet membrane glycoprotein (GP) Ib. Unlike native vWF, the 39/34-kDa fragment bound to GP Ib without the requirement for a modulator but showed increased binding in the presence of botrocetin. The 39/34-kDa vWF fragment was cross-linked to intact human platelets by using the membrane-impermeable, homobifunctional cross-linking reagent bis(sulfosuccinimidyl) suberate. Two distinct cross-linked species of similar molecular weight (220/200 kDa, nonreduced; 190/175 kDa, reduced) were identified by SDS-polyacrylamide gel electrophoresis and autoradiography, consistent with the cross-linking of the 125I-labeled 39/34-kDa vWF fragment to GP Ib. The formation of these cross-linked species was enhanced 1.5-2.5-fold in the presence of the modulator botrocetin. The platelet membrane protein involved in cross-linking was shown unequivocally to be GP Ib since (i) neither cross-linked species was formed with Bernard-Soulier syndrome platelets, which genetically lack the GP Ib-IX complex, (ii) both cross-linked species were specifically immunoprecipitated by anti-GP Ib polyclonal and monoclonal antibodies, and (iii) the formation of the cross-linked species was completely inhibited only by those anti-GP Ib-IX complex monoclonal antibodies that inhibited vWF-GP Ib-IX complex interaction. Proteolysis of cross-linked platelets with endoproteinase Lys-C, which preferentially cleaves off the N-terminal peptide domain on the alpha-chain of GP Ib, indicated that the 39/34-kDa vWF fragment was cross-linked exclusively to this region of the GP Ib-IX complex.  相似文献   

16.
High-performance liquid chromatography on an Asahipak GS-320 column using isocratic elution with 0.1 M acetic acid has proven effective for fractionation of peptides of molecular weights lower than 3000. This technique enabled the separation of the peptides derived from digestion of native ribonuclease F1 by trypsin and chymotrypsin in combination with conventional gel filtration through Sephadex G-25 and reversed-phase HPLC. Amino acid analysis of the cystine-containing peptides thus obtained revealed the disulfide linkages Cys-6-Cys-102 and Cys-24-Cys-84 in this protein. The behavior of a number of peptides in the HPLC on an Asahipak GS-320 column is described and the separation mechanism is discussed.  相似文献   

17.
Heterobifunctional cross-linking reagents have been introduced into the catalytic subunit of cAMP-dependent protein kinase as potential probes for identifying specific points of contact between the catalytic (C)-subunit and the type II regulatory (RII) subunit in the holoenzyme complex. Since at least one of the 2 cysteine residues in the C-subunit is known to be in close proximity to the interaction site between the C-subunit and the RII-subunit, these cysteines were chosen initially as targets for covalent modification by two heterobifunctional cross-linking reagents, p-azidophenacyl bromide and N-4-(azidophenylthio)phthalimide. Treatment of the C-subunit with each reagent led to the stoichiometric modification of Cys-199 and Cys-343. In each case, the modified C-subunit was still capable of forming a stable complex with the RII-subunit. Both modified C-subunits also could be covalently cross-linked to the RII-subunit; however, the mechanisms for cross-linking differed. Catalytic subunit modified by p-azidophenacyl bromide was cross-linked to the RII-subunit in a photodependent manner by a mechanism that was maximal when holoenzyme was formed and cAMP was absent. In contrast, the C-subunit modified by N-4-(azidophenylthio)phthalimide was cross-linked to the RII-subunit by a mechanism that was independent of photolysis. In this case, cross-linking was enhanced by the presence of cAMP. This cross-linking was the result of a disulfide interchange between a modified cysteine in the C-subunit and an unmodified cysteine in the RII-subunit.  相似文献   

18.
ATP synthases - rotary nano machines - consist of two major parts, F(O) and F(1), connected by two stalks: the central and the peripheral stalk. In spinach chloroplasts, the central stalk (subunits gamma, epsilon) forms with the cylinder of subunits III the rotor and transmits proton motive force from F(O) to F(1), inducing conformational changes of the catalytic centers in F(1). The epsilon subunit is an important regulator affecting adjacent subunits as well as the activity of the whole protein complex. Using a combination of chemical cross-linking and mass spectrometry, we monitored interactions of subunit epsilon in spinach chloroplast ATP synthase with III and gamma. Onto identification of interacting residues in subunits epsilon and III, one cross-link defined the distance between epsilon-Cys6 and III-Lys48 to be 9.4 A at minimum. epsilon-Cys6 was competitively cross-linked with subunit gamma. Altered cross-linking yields revealed the impact of nucleotides and Mg(2+) on cross-linking of subunit epsilon. The presence of nucleotides apparently induced a displacement of the N-terminus of subunit epsilon, which separated epsilon-Cys6 from both, III-Lys48 and subunit gamma, and thus decreasing the yield of the cross-linked subunits epsilon and gamma as well as epsilon and III. However, increasing concentrations of the cofactor Mg(2+) favoured cross-linking of epsilon-Cys6 with subunit gamma instead of III-Lys48 indicating an approximation of subunits gamma and epsilon and a separation from III-Lys48.  相似文献   

19.
R P Miller  R A Farley 《Biochemistry》1990,29(6):1524-1532
Previous studies of titratable (Na+ + K+)-ATPase sulfhydryl groups have indicated the presence of one disulfide bond per mole of holoenzyme. This single disulfide cross-link was assigned to the beta subunit on the basis of the difference between the number of titrated "free" sulfhydryl groups and the total number of titrated sulfhydryl groups for each subunit [Esmann, M. (1982) Biochim. Biophys. Acta 688, 251; Kawamura, M., & Nagano, K. (1984) Biochim. Biophys. Acta 694, 27]. In the present study, beta-subunit tryptic peptides containing disulfide cross-links were identified and purified by HPLC. Two new peptides were generated from each disulfide-bonded peptide by reduction with dithiothreitol, and the amino acid compositions of these reduced peptides were determined. The data demonstrate that there are three disulfide bonds in the native beta subunit: 125Cys-148Cys, 158Cys-174Cys, and 212Cys-275Cys. The number of disulfide bonds in the beta subunit was also estimated by titration of sulfhydryl groups with [14C]iodoacetamide. Six sulfhydryl groups were identified: two sulfhydryl groups were titrated without prior reduction, and four were identified only after reduction of the protein with dithiothreitol. These data, suggesting that the beta subunit contains two disulfide bonds, are inconsistent with the peptide isolation experiments, which directly identified three disulfide bonds in the beta subunit. This inconsistency was resolved by demonstrating that approximately 20% of each disulfide bond in the beta subunit was reduced prior to the start of the experiment, resulting in an underestimation of the number of disulfide-bonded sulfhydryl groups in the beta subunit from the titration experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated oxygen equilibrium properties of highly purified human adult hemoglobin cross-linked between lysine-82 beta 1 and lysine-82 beta 2 by a fumaryl group, which is prepared by reaction of the CO form with bis(3,5-dibromosalicyl) fumarate. The cross-linked hemoglobin preparation isolated by the previous purification method, namely, gel filtration in the presence of 1 M MgCl2 followed by ion-exchange chromatography, was found to be contaminated with about 20% of an electrophoretically silent impurity that shows remarkably high affinity for oxygen. This impurity was separated from the desired cross-linked hemoglobin by a newly developed purification method, which utilizes a difference between the authentic hemoglobin and the impurity in reactivity of the sulfhydryl groups of cysteine-93 beta toward N-ethylmaleimide under a deoxygenated condition. After this purification procedure, the oxygen equilibrium properties of purified cross-linked hemoglobin in the absence of organic phosphate became very similar to those of unmodified hemoglobin with respect to oxygen affinity, cooperativity, and the alkaline Bohr effect. The functional similarity between the cross-linked hemoglobin and unmodified hemoglobin allows us to utilize this cross-linking for preparing asymmetric hybrid hemoglobin tetramers, which are particularly useful as intermediately liganded models. Previous studies on this type of cross-linked hemoglobin should be subject to reexamination due to the considerable amount of the impurity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号