首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M-phase-promoting factor (MPF), a complex of cdc2 and a B-type cyclin, is a key regulator of the G2/M cell cycle transition. Cyclin B1 accumulates in the cytoplasm through S and G2 phases and translocates to the nucleus during prophase. We show here that cytoplasmic localization of cyclin B1 during interphase is directed by its nuclear export signal (NES)-dependent transport mechanism. Treatment of HeLa cells with leptomycin B (LMB), a specific inhibitor of the NES-dependent transport, resulted in nuclear accumulation of cyclin B1 in G2 phase. Disruption of an NES which has been identified in cyclin B1 here abolished the nuclear export of this protein, and consequently the NES-disrupted cyclin B1 when expressed in cells accumulated in the nucleus. Moreover, we show that expression of the NES-disrupted cyclin B1 or LMB treatment of the cells is able to override the DNA damage-induced G2 checkpoint when combined with caffeine treatment. These results suggest a role of nuclear exclusion of cyclin B1 in the DNA damage-induced G2 checkpoint.  相似文献   

2.
Maturation-promoting factor (MPF), a final trigger for initiating oocyte maturation, is activated in the oocyte cytoplasm, in response to maturation-inducing hormone (MIH) secreted from follicle cells surrounding the oocyte. MPF consists of cdc2 and cyclin B. We investigated the state of cdc2 and cyclin B in immature and mature oocytes of fishes (carp, catfish and lamprey) and amphibians ( Xenopus, frog [ Rana ] and toad [ Bufo ]) using monoclonal antibodies raised against mouse cdc2, which also recognize fish and amphibian cdc2, and monoclonal antibodies against goldfish cyclin B1 and polyclonal antibodies against Xenopus cyclins B1 and B2. Anti-cdc2 and anti-cyclin B immunoblotting of oocyte extracts fractionated by gel filtration chromatography showed that immature oocytes from all of these species with the exception of Xenopus contained only monomeric cdc2. Cyclin B-bound inactive cdc2 (pre-MPF) was present only in immature Xenopus oocytes. Cdc2-cyclin B complex was, however, found in mature oocytes from all the species examined. After the oocyte is induced to mature by MIH, cdc2 should therefore bind to cyclin B in all of these species, except Xenopus. These results suggest that the complex formation of cdc2 and cyclin B in response to MIH stimulation at the oocyte surface is a critical step for initiating oocyte maturation in fishes and amphibians, with the exception of Xenopus , in which pre-MPF already exists in immature oocytes and only its chemical modification is required for MPF activation.  相似文献   

3.
Under the influence of maturation-inducing hormone (MIH) secreted from follicle cells, oocyte maturation is finally triggered by maturation-promoting factor (MPF), which consists of a homolog of the cdc2+ gene product of fission yeast (p34cdc2) and cyclin B. Two species of cyclin B clones were isolated from a cDNA library constructed from mature goldfish oocytes. Sequence comparisons revealed that these two clones are highly homologous (95%) and were found to be similar to Xenopus cyclin B1. Using monoclonal antibodies against Escherichia coli-produced goldfish cyclin B and the PSTAIR sequence of p34cdc2, we examined the levels of cyclin B and p34cdc2 proteins during goldfish oocyte maturation induced in vitro by 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), a natural MIH in fish. Protein p34cdc2 was found in immature oocyte extracts and did not remarkably change during oocyte maturation. Cyclin B was not detected in immature oocyte extracts and appeared when oocytes underwent germinal vesicle breakdown. Cyclin B that appeared during oocyte maturation was labelled with [35S]methionine, indicating its de novo synthesis. Introduction of E. coli-produced cyclin B into immature oocyte extracts induced p34cdc2 (MPF) activation. Although the possibility that immature goldfish oocytes contain an insoluble cyclin B is not completely excluded, these results strongly suggest that 17 alpha, 20 beta-DP induces oocytes to synthesize cyclin B, which in turn activates preexisting p34cdc2, forming active MPF.  相似文献   

4.
M phase promoting factor (MPF) is a major element controlling entry into the M phase of the eukaryotic cell cycle. MPF is composed of two subunits, p34cdc2 and cyclin B. Using indirect immunofluorescence staining with specific antibody against starfish cyclin B, we monitored the dynamics of the subcellular distribution of MPF during meiosis reinitiation in starfish oocytes. We found that all of the cyclin B is already associated with p34cdc2 in immature oocytes arrested at the G2/M border and that this inactive complex is present exclusively in the cytoplasm. After its activation, part of the p34cdc2-cyclin B complex moves into the germinal vesicle before nuclear envelope breakdown, independently of either microtubules or actin filaments. Thereafter, some part of the complex accumulates in the nucleolus and condensed chromosomes. Another portion of the complex accumulates on meiotic asters and spindles, while the rest is still present throughout the cytoplasm. As these patterns of localization are detected in the detergent-extracted oocytes, we propose at least four distinct subcellular states of the p34cdc2-cyclin B complex: freely soluble, microtubule-associated, detergent-resistant cytoskeleton-associated and chromosome-associated. Thus, in addition to the intramolecular modification of p34cdc2-cyclin B complex, its intracellular relocation plays a key role in promoting the M phase.  相似文献   

5.
The initiation of mitosis requires the activation of M-phase promoting factor (MPF). MPF activation and its subcellular localization are dependent on the phosphorylation state of its components, cdc2 and cyclin B1. In a two-hybrid screen using a bait protein to mimic phosphorylated cyclin B1, we identified a novel interaction between cyclin B1 and patched1 (ptc1), a tumor suppressor associated with basal cell carcinoma (BCC). Ptc1 interacted specifically with constitutively phosphorylated cyclin B1 derivatives and was able to alter their normal subcellular localization. Furthermore, addition of the ptc1 ligand, sonic hedgehog (shh), disrupts this interaction and allows cyclin B1 to localize to the nucleus. Expression of ptc1 in 293T cells was inhibitory to cell proliferation; this inhibition could be relieved by coexpression of a cyclin B1 derivative that constitutively localizes to the nucleus and that could not interact with ptc1 due to phosphorylation-site mutations to ALA: In addition, we demonstrate that endogenous ptc1 and endogenous cyclin B1 interact in vivo. The findings reported here demonstrate that ptc1 participates in determining the subcellular localization of cyclin B1 and suggest a link between the tumor suppressor activity of ptc1 and the regulation of cell division. Thus, we propose that ptc1 participates in a G(2)/M checkpoint by regulating the localization of MPF.  相似文献   

6.
Human cyclin F.   总被引:1,自引:1,他引:0  
C Bai  R Richman    S J Elledge 《The EMBO journal》1994,13(24):6087-6098
Cyclins are important regulators of cell cycle transitions through their ability to bind and activate cyclin-dependent protein kinases. In mammals several classes of cyclins exist which are thought to co-ordinate the timing of different events necessary for cell cycle progression. Here we describe the identification of a novel human cyclin, cyclin F, isolated as a suppressor of the G1/S deficiency of a Saccharomyces cerevisiae cdc4 mutant. Cyclin F is the largest cyclin, with a molecular weight of 87 kDa, and migrates as a 100-110 kDa protein. It contains an extensive PEST-rich C-terminus and a cyclin box region that is most closely related to cyclins A and B. Cyclin F mRNA is ubiquitiously expressed in human tissues. It fluctuates dramatically through the cell cycle, peaking in G2 like cyclin A and decreasing prior to decline of cyclin B mRNA. Cyclin F protein accumulates in interphase and is destroyed at mitosis at a time distinct from cyclin B. Cyclin F shows regulated subcellular localization, being localized in the nucleus in most cells, with a significant percentage of cells displaying only perinuclear staining. Overexpression of cyclin F, or a mutant lacking the PEST region, in human cells resulted in a significant increase in the G2 population, implicating cyclin F in the regulation of cell cycle transitions. The ubiquitous expression and phylogentic conservation of cyclin F suggests that it is likely to coordinate essential cell cycle events distinct from those regulated by other cyclins.  相似文献   

7.
Cyclin is a component of maturation-promoting factor from Xenopus   总被引:88,自引:0,他引:88  
J Gautier  J Minshull  M Lohka  M Glotzer  T Hunt  J L Maller 《Cell》1990,60(3):487-494
Highly purified maturation-promoting factor (MPF) from Xenopus eggs contains both cyclin B1 and cyclin B2 as shown by Western blotting and immunoprecipitation using Xenopus anti-B-type cyclin antibodies. Immunoprecipitates with these antibodies display the histone H1 kinase activity characteristic of MPF, for which exogenously added B1 and B2 cyclins are both substrates. Protein kinase activity against cyclin oscillates in maturing oocytes and activated eggs with the same kinetics as p34cdc2 kinase activity. These data indicate that B-type cyclin is the other component of MPF besides p34cdc2.  相似文献   

8.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2-cyclinB1 complex). It has previously been demonstrated that the p34cdc2-cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215-cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

9.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2–cyclinB1 complex). It has previously been demonstrated that the p34cdc2–cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215–cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

10.
At the G2/M transition of the cell cycle, the cdc25c phosphatase dephosphorylates inhibitory residues of cdc2, and cyclin-B–cdc2 kinase (MPF) is activated. Phosphorylation of cyclin B1 induces its nuclear accumulation, and, since cdc25c is also believed to accumulate and activate shortly before G2/M in the nucleus, it has been proposed that this induces cyclin-B1–cdc2 kinase activation. We demonstrate that cyclin B1 phosphorylation has another essential function in vivo: it is required for cdc25c and MPF activation, which does not require nuclear accumulation of cyclin B1, and occurs in the cytoplasm.  相似文献   

11.
M phase or maturation promoting factor (MPF), a kinase complex composed of the regulatory cyclin B and the catalytic p34cdc2 kinase, plays important roles in meiosis and mitosis. This study was designed to detect and compare the subcellular localization of cyclin B1, phosphorylated cyclin B1 and p34cdc2 during oocyte meiotic maturation and fertilization in mouse. We found that all these proteins were concentrated in the germinal vesicle of oocytes. Shortly after germinal vesicle breakdown, all these proteins were accumulated around the condensed chromosomes. With spindle formation at metaphase I, cyclin B1 and phosphorylated cyclin B1 were localized around the condensed chromosomes and concentrated at the spindle poles, while p34cdc2 was localized in the spindle region. At the anaphase/telophase transition, phosphorylated cyclin B1 was accumulated in the midbody between the separating chromosomes/chromatids, while p34cdc2 was accumulated in the entire spindle except for the midbody region. At metaphase II, both cyclin B1 and p34cdc2 were horizontally localized in the region with the aligned chromosomes and the two poles of the spindle, while phosphorylated cyclin B1 was localized in the two poles of spindle and the chromosomes. We could not detect a particular distribution of cyclin B1 in fertilized eggs when the pronuclei were initially formed, but in late pronuclei cyclin B1 was accumulated in the pronuclei. p34cdc2 and phosphorylated cyclin B1 were always concentrated in one pronucleus after parthenogenetic activation or in two pronuclei after fertilization. At metaphase of 1-cell embryos, cyclin B1 was accumulated around the condensed chromosomes. Cyclin B1 was accumulated in the nucleus of late 2-cell embryos but not in early 2-cell embryos. Furthermore, we also detected the accumulation of p34cdc2 in the nucleus of 2- and 4-cell embryos. All these results show that cyclin B1, phosphorylated cyclin B1 and p34cdc2 have similar distributions at some stages but different localizations at other stages during oocyte meiotic maturation and fertilization, suggesting that they may play a common role in some events but different roles in other events during oocyte maturation and fertilization.  相似文献   

12.
We have purified to near homogeneity the M-phase-specific protein kinase from starfish oocytes at first meiotic metaphase, using an improved procedure based on affinity chromatography on the immobilized yeast protein suc1. As already reported, this is identical to MPF, the cytoplasmic factor that controls entry of eukaryotic cells into M-phase. MPF is a complex formed by the stoichiometric association of a 34-kd polypeptide previously identified as cdc2 with a polypeptide that migrates with the same mobility as starfish cyclin in SDS-PAGE (apparent mol. wt 47 kd). A cDNA clone encoding starfish cyclin B has been isolated and its sequence determined. It contains a single open reading frame encoding a predicted 43 729-dalton protein. Partial microsequencing of the 47-kd polypeptide component of MPF allowed its identification as the starfish cyclin. Since the apparent mol. wt of native starfish MPF was found to be less than 100 kd, it is a heterodimer comprising one molecule of cdc2 and one molecule of cyclin B.  相似文献   

13.
In the early development of the frog, Xenopus laevis, blastomeres undergo synchronous divisions at about the 12th cell cycle, followed by asynchronous divisions, which is referred to as mid-blastula transition (MBT). We investigated the distribution of several regulating factors for cell cycles around MBT using immunocytochemistry and confocal fluorescence microscopy. At the 8th cell cycle, most of the cdc2/cyclin B was localized in the cortical cytoplasm throughout the cell cycle, in the centrosomes and the nucleus at interphase and prometaphase, and in the spindles at metaphase and anaphase. Cdc2 was also localized in the chromatins at metaphase and anaphase. Cyclin B1 mRNA was localized in the periphery of the nucleus, but not in the cell cortex. At the 13th cell cycle, the amount of cdc2/cyclin B in the cortical cytoplasm decreased, and the inactive form of cdc2, phosphorylated at tyrosine 15, appeared in the nucleus and the centrosomes at interphase, indicating that the regulation of cdc2 by phosphorylation occurs around MBT. When the blastomeres were treated with nocodazole or latrunculin A at the 8th cell cycle, the amount of cortical cdc2 decreased, but that of cyclin B did not change. The cortical localization of cdc2 is dependent upon both microtubules and microfilaments. Most of the cdc27 was localized in the centrosomes, and in the spindle poles, but no significant difference was observed between the 8th and the 13th cell cycles. It is possible that the cortical MPF activity is regulated by the differential localization between cdc2 and cyclin B.  相似文献   

14.
MPF localization is controlled by nuclear export.   总被引:20,自引:2,他引:18       下载免费PDF全文
A Hagting  C Karlsson  P Clute  M Jackman    J Pines 《The EMBO journal》1998,17(14):4127-4138
In eukaryotes, mitosis is initiated by M phase promoting factor (MPF), composed of B-type cyclins and their partner protein kinase, CDK1. In animal cells, MPF is cytoplasmic in interphase and is translocated into the nucleus after mitosis has begun, after which it associates with the mitotic apparatus until the cyclins are degraded in anaphase. We have used a fusion protein between human cyclin B1 and green fluorescent protein (GFP) to study this dynamic behaviour in real time, in living cells. We found that when we injected cyclin B1-GFP, or cyclin B1-GFP bound to CDK1 (i.e. MPF), into interphase nuclei it is rapidly exported into the cytoplasm. Cyclin B1 nuclear export is blocked by leptomycin B, an inhibitor of the recently identified export factor, exportin 1 (CRM1). The nuclear export of MPF is mediated by a nuclear export sequence in cyclin B1, and an export-defective cyclin B1 accumulates in interphase nuclei. Therefore, during interphase MPF constantly shuttles between the nucleus and the cytoplasm, but the bulk of MPF is retained in the cytoplasm by rapid nuclear export. We found that a cyclin mutant with a defective nuclear export signal does not enhance the premature mitosis caused by interfering with the regulatory phosphorylation of CDK1, but is more sensitive to inhibition by the Wee1 kinase.  相似文献   

15.
The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.  相似文献   

16.
17.
Previous studies from this laboratory have shown that purified MPF from Xenopus eggs contains cyclin B2 complexed with cdc2 kinase. The activation of MPF during oocyte maturation is known to require expression of the c-mos(xe) proto-oncogene. We show here that immunoprecipitates of either v-mos from Moloney murine sarcoma virus-transformed NIH 3T3 cells or c-mos from Xenopus eggs phosphorylate cyclin B2 in vitro. Phosphopeptide analysis reveals a pattern similar to that observed with cdc2 kinase. Moreover, ablation of c-mos(xe) from oocytes by antisense oligonucleotide injection reduces the rate of cyclin B2 phosphorylation in oocyte extracts by 40%. These results suggest that the mechanism of activation of MPF by c-mos(xe) involves phosphorylation of the cyclin component.  相似文献   

18.
Tyrosine-phosphorylated p34cdc2 and cyclin B2 are present and physically associated in small growing stage IV oocytes (800 microns in diameter) of Xenopus laevis. Microinjection of M-phase promoting factor (MPF) into stage IV oocytes induces germinal vesicle breakdown and the activation of the kinase activity of the p34cdc2/cyclin B2 complex measured on p13suc1 beads. During the in vivo activation of MPF in stage IV oocytes, p34cdc2 tyrosine dephosphorylation is not detectable, in contrast to stage VI oocytes. Addition of cycloheximide in MPF-injected stage IV oocytes induces neither the inhibition of histone H1 kinase activity nor the cyclin B2 degradation. Therefore, the activation mechanism of histone H1 kinase in stage IV oocytes does not require detectable tyrosine dephosphorylation of p34cdc2. It is suggested rather that the tyrosine phosphorylation of p34cdc2 plays a role in inhibiting cyclin B2 degradation.  相似文献   

19.
20.
In the clam, Spisula, two previously described proteins known as cyclin A and B display the unusual property of selective proteolytic degradation at the end of each mitosis. We show here that clam oocytes and embryos contain a cdc2 protein kinase. This protein kinase is a component of the M phase promoting factor (MPF) in frog eggs and the M phase-specific histone H1 kinase in starfish. Clam cdc2 is found in association with both cyclin A and B, probably not as a trimolecular association, but as separate cdc2/cyclin A and cdc2/cyclin B complexes. Clam cdc2 and the associated cyclins bind to p13suc1-Sepharose. The p13-bound complex, and also anti-cyclin A or B immunoprecipitates, each display cell cycle-dependent histone H1 kinase activity. We suggest that in addition to the cdc2 protein kinase, the cyclins are further components of the M phase promoting factor and that cyclin proteolysis provides the mechanism of MPF inactivation and thus exit from mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号