首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The histogenesis of retinoblastoma tumors remains controversial, with the cell-of-origin variably proposed to be an uncommitted retinal progenitor cell, a bipotent committed cell, or a cell committed to a specific lineage. Here, we examine the expression of two members of the orthodenticle family implicated in photoreceptor and bipolar cell differentiation, cone-rod homeobox, CRX, and orthodenticle homeobox 2, OTX2, in normal human retina, retinoblastoma cell lines and retinoblastoma tumors. We show that CRX and OTX2 have distinct expression profiles in the developing human retina, with CRX first expressed in proliferating cells and cells committed to the bipolar lineage, and OTX2 first appearing in the photoreceptor lineage. In the mature retina, CRX levels are highest in photoreceptor cells whereas OTX2 is preferentially found in bipolar cells and in the retinal pigmented epithelium. Both CRX and OTX2 are widely expressed in retinoblastoma cell lines and in retinoblastoma tumors, although CRX is more abundant than OTX2 in the differentiated elements of retinoblastoma tumors such as large rosettes, Flexner-Wintersteiner rosettes and fleurettes. Widespread expression of CRX and OTX2 in retinoblastoma tumors and cell lines suggests a close link between the cell-of-origin of retinoblastoma tumors and cells expressing CRX and OTX2.  相似文献   

2.
3.
Fish have multiple types and subtypes of opsin genes that are expressed in a highly regulated manner in retinal photoreceptor cells. In the rod opsin proximal promoter region (RPPR) of zebrafish (Danio rerio), the BAT 1 regulatory region contains highly conserved OTX (GATTA) and OTX-like (TATTA) sequences that can be recognized by the mammalian cone–rod homeobox (CRX) protein. However, binding of zebrafish crx to the OTX sequence has remained elusive. In contrast to the BAT 1 region, the Ret 1 region, located approximately 20 bp upstream of the BAT 1 region in mammals, is not conserved in zebrafish. In the Ret 1 region, even the core OTX-like sequence (AATTA sequence in mammals) is destructed. We show in this study that a region between Ret 1 and BAT 1 (denoted IRB, Inter-Ret 1-BAT 1) is highly conserved among fish species. Using electrophoretic mobility shift assay (EMSA), we show that zebrafish crx binds to the conserved OTX sequence and that the fish-specific IRB region specifically binds elements present in both retinal and brain nuclear extracts of zebrafish. These results imply that the regulatory mechanisms of opsin gene expression consist not only of evolutionarily conserved but also of divergent machinery among different animal taxa.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
Learning module networks from genome-wide location and expression data   总被引:6,自引:0,他引:6  
Xu X  Wang L  Ding D 《FEBS letters》2004,578(3):297-304
  相似文献   

13.
14.
15.
16.
17.
18.
Cyclin G2, together with cyclin G1 and cyclin I, defines a novel cyclin family expressed in terminally differentiated tissues including brain and muscle. Cyclin G2 expression is up-regulated as cells undergo cell cycle arrest or apoptosis in response to inhibitory stimuli independent of p53 (Horne, M., Donaldson, K., Goolsby, G., Tran, D., Mulheisen, M., Hell, J. and Wahl, A. (1997) J. Biol. Chem. 272, 12650-12661). We tested the hypothesis that cyclin G2 may be a negative regulator of cell cycle progression and found that ectopic expression of cyclin G2 induces the formation of aberrant nuclei and cell cycle arrest in HEK293 and Chinese hamster ovary cells. Cyclin G2 is primarily partitioned to a detergent-resistant compartment, suggesting an association with cytoskeletal elements. We determined that cyclin G2 and its homolog cyclin G1 directly interact with the catalytic subunit of protein phosphatase 2A (PP2A). An okadaic acid-sensitive (<2 nm) phosphatase activity coprecipitates with endogenous and ectopic cyclin G2. We found that cyclin G2 also associates with various PP2A B' regulatory subunits, as previously shown for cyclin G1. The PP2A/A subunit is not detectable in cyclin G2-PP2A-B'-C complexes. Notably, cyclin G2 colocalizes with both PP2A/C and B' subunits in detergent-resistant cellular compartments, suggesting that these complexes form in living cells. The ability of cyclin G2 to inhibit cell cycle progression correlates with its ability to bind PP2A/B' and C subunits. Together, our findings suggest that cyclin G2-PP2A complexes inhibit cell cycle progression.  相似文献   

19.
NASP (nuclear autoantigenic sperm protein) is a linker histone-binding protein found in all dividing cells that is regulated by the cell cycle (Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F., and O'Rand, M. G. (2000) J. Biol. Chem. 275, 30378-30386), and in the nucleus linker histones not bound to DNA are bound to NASP (Alekseev, O. M., Bencic, D. C., Richardson R. T., Widgren E. E., and O'Rand, M. G. (2003) J. Biol. Chem. 278, 8846-8852). In mouse spermatogenic cells tNASP binds the testis-specific linker histone H1t. Utilizing a cross-linker, 3,3'-dithiobissulfosuccinimidyl propionate, and mass spectrometry, we have identified HSP90 as a testis/embryo form of NASP (tNASP)-binding partner. In vitro assays demonstrate that the association of tNASP with HSP90 stimulated the ATPase activity of HSP90 and increased the binding of H1t to tNASP. HSP90 and tNASP are present in both nuclear and cytoplasmic fractions of mouse spermatogenic cells; however, HSP90 bound to NASP only in the cytoplasm. In vitro nuclear import assays on permeabilized HeLa cells demonstrate that tNASP, in the absence of any other cytoplasmic factors, transports linker histones into the nucleus in an energy and nuclear localization signal-dependent manner. Consequently we hypothesize that in the cytoplasm linker histones are bound to a complex containing NASP and HSP90 whose ATPase activity is stimulated by binding NASP. NASP-H1 is subsequently released from the complex and translocates to the nucleus where the H1 is released for binding to the DNA.  相似文献   

20.
Our previous study indicated that nuclear protein factors of HeLa cells specifically bind to three nuclear Mt elements, Mt1, Mt3, and Mt4, located in the 5'-flanking regions of the human nuclear genes for cytochrome c1 and for ubiquinone-binding protein, both of which are subunits of mitochondrial cytochrome bc1 complex (Suzuki, H., Hosokawa, Y., Toda, H., Nishikimi, M., and Ozawa, T. (1990) J. Biol. Chem. 265, 8159-8163). In this study, we examined whether the same nuclear factors could recognize a set of the Mt3 and Mt4 elements that were found in the displacement loop and the promoter region of mammalian mitochondrial genomes. Gel retardation experiments disclosed that the same nuclear protein factors specifically bind to those Mt elements in the human mitochondrial genome as well as to the nuclear Mt3 and Mt4 elements of the two genes, and that the coexistence of both the elements is required for the efficient binding. The nuclear protein factors which recognize the Mt elements located in the regulatory regions of the nuclear and mitochondrial genes may play an important role in coordinate expression of the two physically separated genes during mitochondrial biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号