首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Lead (Pb) induces the expression of immediate early genes (IEG) in PC12 cells by a mechanism that involves protein kinase C (PKC). To define the mechanisms, the involvement of two commonly observed lipid activators of PKC, diacylglycerols, and phosphatidylinositols, were examined. A dose-dependent increase in the expression of the IEG zif268 was observed in PC12 cells exposed to Pb. The PKC inhibitor Ro-31-8220 blocked the induction. An increase in levels of diacylglycerols was observed in PC12 cells exposed to Pb, but the increase was inhibited by Ro-31-8220. The phosphatidylinositol 3-kinase inhibitor Wortmannin, but not the inhibitor LY 294002, blocked the induction zif268 in Pb-exposed cells. Small increases in phosphatidylinositol 3-kinase activity were observed after exposure to Pb. In summary, diacylglycerols are elevated in PC12 cells exposed to Pb by a mechanism that requires PKC. It is possible that diacylglycerols contribute to the induction of zif268 by Pb by sustaining PKC activation.  相似文献   

2.
3.
Previous studies have demonstrated that stimulation of phospholipase C-linked G-protein-coupled receptors, including muscarinic M1 and M3 receptors, increases the release of the soluble form of amyloid precursor protein (sAPPalpha) by alpha-secretase cleavage. In this study, we examined the involvement of capacitative Ca2+ entry (CCE) in the regulation of muscarinic acetylcholine receptor (mAChR)-dependent sAPPalpha release in neuroblastoma SH-SY5Y cells expressing abundant M3 mAChRs. The sAPPalpha release stimulated by mAChR activation was abolished by EGTA, an extracellular Ca2+ chelator, which abolished mAChR-mediated Ca2+ influx without affecting Ca2+ mobilization from intracellular stores. However, mAChR-mediated sAPPalpha release was not inhibited by thapsigargin, which increases basal [Ca2+]i by depletion of Ca2+ from intracellular stores. While these results indicate that the mAChR-mediated increase in sAPPalpha release is regulated largely by Ca2+ influx rather than by Ca2+ mobilization from intracellular stores, we further investigated the Ca2+ entry mechanisms regulating this phenomenon. CCE inhibitors such as Gd3+, SKF96365, and 2-aminoethoxydiphenyl borane (2-APB), dose dependently reduced both Ca2+ influx and sAPPalpha release stimulated by mAChR activation, whereas inhibition of voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, or Na+-pumps was without effect. These results indicate that CCE plays an important role in the mAChR-mediated release of sAPPalpha.  相似文献   

4.
We have previously shown that stimulation of M1 muscarinic acetylcholine receptors (mAChRs) in neuronal PC12D cells rapidly induces the immediate-early gene zif 268 [Ebihara, T. & Saffen, D. (1997) J. Neurochem. 68, 1001-1010]. Here we show that stimulation of M1 mAChRs in these cells activates four distal serum response elements (SREs) in the zif 268 promoter, and that this activation is strongly inhibited by Clostridium botulinum C3 exoenzyme (C3), which specifically inactivates the small G-protein Rho. Even with high doses of C3, however, a portion of the activation remains intact, indicating that stimulation of M1 mAChRs activates zif 268 SREs via Rho-dependent and Rho-independent pathways. Moreover, the Rho-independent activation of zif 268 SREs is inhibited by the dominant-negative form of the small G-protein Ras, suggesting that Rho-independent activation of zif 268 SREs is mediated by Ras. To determine if muscarinic agonists activate RhoA, we also measured the translocation of RhoA from the cytosolic fraction to the particulate fraction. Translocation of RhoA to the particulate fraction was observed within 15 min following stimulation of M1 mAChRs, indicating that RhoA is activated with sufficient rapidity to participate in the induction of zif 268 mRNA. Together, these results suggest that RhoA is activated following stimulation of M1 mAChRs and functions in SRE-dependent induction of the zif 268 gene within a Ras-independent pathway.  相似文献   

5.
Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+]i) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of Galphaq/11-coupled M1, M3 and M5 receptors and intracellular calcium stores, whereas Galphai/o-protein coupled M2 receptor activity mediated neuronal differentiation.  相似文献   

6.
7.
In this paper we report that stimulation of mAChRs in PC12D cells activates Ca2+ channels that are regulated independently of intracellular Ca2+ stores. In nominally Ca2+-free medium, exposure of PC12D cells to carbachol stimulates a robust influx of Ba2+, a Ca2+ substitute. This influx is blocked by atropine, but not by inhibitors of the nicotinic acetylcholine receptor or L-, N-, or T-type voltage-regulated Ca2+ channels. By contrast, depletion of intracellular Ca2+ stores with thapsigargin only weakly stimulates Ba2+ influx. Unlike store-operated Ca2+ channels (SOCCs), which close only after intracellular Ca2+ stores refill, channels mediating carbachol-stimulated Ba2+ influx rapidly close following the inactivation of mAChRs with atropine. Ba2+ influx is inhibited by extracellular Ca2+, by the Ca2+ channel blocker SKF-96365, and by activation of protein kinase C (PKC). Exogenous expression of antisense RNA encoding the rat canonical-transient receptor potential Ca2+ channel subtype 6 (TRPC6) or the N-terminal domain of TRPC6 blocks carbachol-stimulated Ba2+ influx in PC12D cells. Expression of TRPC6 antisense RNA or the TRPC6 N-terminal domain also blocks Ba2+ influx stimulated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a diacylglycerol analog previously shown to activate exogenously expressed TRPC6 channels. These data show that mAChRs in PC12D cells activate endogenous Ca2+ channels that are regulated independently of Ca2+ stores and require the expression of TRPC6.  相似文献   

8.
Abstract: This study investigated the hypothesis that D1 and D2 dopamine receptors interact to regulate the expression of zif/268 mRNA in rat forebrain after an acute injection of amphetamine or methamphetamine. Forty-five minutes and 3 h after a single injection of amphetamine (4 mg/kg i.p.) or methamphetamine (4 mg/kg i.p.), the mRNA expression of zif/268 in dorsal striatum and sensorimotor cortex was increased, as revealed by quantitative in situ hybridization histochemistry. Induction was more intense in striatal patches at 45 min than at 3 h, when a more homogeneous pattern of zif/268 mRNA induction was observed. SCH 23390, a selective D1 receptor antagonist, suppressed, and eticlopride, a D2 receptor antagonist, elevated, constitutive zif/268 mRNA levels in the striatum, but neither antagonist had a significant effect on the constitutive expression of zif/268 in sensorimotor cortex. Pretreatment with SCH 23390 completely blocked the stimulant-induced zif/268 expression in striatum and partially blocked the stimulant-induced zif/268 expression in cortex. Pretreatment with eticlopride augmented zif/268 mRNA expression in patch and matrix compartments of dorsal and ventral striatum 45 min after amphetamine or methamphetamine injection. However, at 3 h, eticlopride completely blocked amphetamine- and methamphetamine-stimulated zif/268 mRNA in dorsomedial, but not dorsolateral, striatum. In addition, eticlopride partially blocked cortical zif/268 induction by both amphetamines. Both antagonists prevented stimulant-induced hyperlocomotion and stereotypies. These results demonstrate that D1 and D2 receptors in mesolimbic/mesostriatal pathways both regulate amphetamine-and methamphetamine-stimulated behaviors and zif/268 mRNA expression. Furthermore, the effect of D2 receptor blockade on zif/268 expression was found to be contingent on the time interval investigated after psychostimulant administration.  相似文献   

9.
Denys A  Aires V  Hichami A  Khan NA 《FEBS letters》2004,564(1-2):177-182
This study was conducted on human Jurkat T-cells to investigate the role of depletion of intracellular Ca(2+) stores in the phosphorylation of two mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated kinase (ERK) 1 and ERK2, and their modulation by a polyunsaturated fatty acid, docosahexaenoic acid (DHA). We observed that thapsigargin (TG) stimulated MAPK activation by store-operated calcium (SOC) influx via opening of calcium release-activated calcium (CRAC) channels as tyrphostin-A9, a CRAC channel blocker, and two SOC influx inhibitors, econazole and SKF-96365, diminished the action of the former. TG-stimulated ERK1/ERK2 phosphorylation was also diminished in buffer containing EGTA, a calcium chelator, further suggesting the implication of calcium influx in MAPK activation in these cells. Moreover, TG stimulated the production of diacylglycerol (DAG) by activating phospholipase D (PLD) as propranolol (PROP) (a PLD inhibitor), but not U73122 (a phospholipase C inhibitor), inhibited TG-evoked DAG production in these cells. DAG production and protein kinase C (PKC) activation were involved upstream of MAPK activation as PROP and GF109203X, a PKC inhibitor, abolished the action of TG on ERK1/ERK2 phosphorylation. Furthermore, DHA seems to act by inhibiting PKC activation as this fatty acid diminished TG- and phorbol 12-myristate 13-acetate-induced ERK1/ERK2 phosphorylation in these cells. Together these results suggest that Ca(2+) influx via CRAC channels is implicated in PLD/PKC/MAPK activation which may be a target of physiological agents such as DHA.  相似文献   

10.
11.
Although muscarinic acetylcholine receptors (mAChR) regulate the activity of smooth muscle myosin, the effects of mAChR activation on cytoplasmic myosin have not been characterized. We found that activation of transfected human M3 mAChR induces the phosphorylation of myosin light chains (MLC) and the formation of myosin-containing stress fibers in Chinese hamster ovary (CHO-m3) cells. Direct activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also induces myosin light chain phosphorylation and myosin reorganization in CHO-m3 cells. Conventional (alpha), novel (delta), and atypical (iota) PKC isoforms are activated by mAChR stimulation or PMA treatment in CHO-m3 cells, as indicated by PKC translocation or degradation. mAChR-mediated myosin reorganization is abolished by inhibiting conventional PKC isoforms with Go6976 (IC50 = 0.4 microM), calphostin C (IC50 = 2.4 microM), or chelerythrine (IC50 = 8.0 microM). Stable expression of dominant negative RhoAAsn-19 diminishes, but does not abolish, mAChR-mediated myosin reorganization in the CHO-m3 cells. Similarly, mAChR-mediated myosin reorganization is diminished, but not abolished, in CHO-m3 cells which are multi-nucleate due to inactivation of Rho with C3 exoenzyme. Expression of dominant negative RhoAAsn-19 or inactivation of RhoA with C3 exoenzyme does not affect PMA-induced myosin reorganization. These findings indicate that the PKC-mediated pathway of myosin reorganization (induced either by M3 mAChR activation or PMA treatment) can continue to operate even when RhoA activity is diminished in CHO-m3 cells. Conventional PKC isoforms and RhoA may participate in separate but parallel pathways induced by M3 mAChR activation to regulate cytoplasmic myosin. Changes in cytoplasmic myosin elicited by M3 mAChR activation may contribute to the unique ability of these receptors to regulate cell morphology, adhesion, and proliferation.  相似文献   

12.
Activation of muscarinic acetylcholine receptors (mAChRs) causes the rapid release of Ca2+ from intracellular stores and a sustained influx of external Ca2+ in PC12D cells, a subline of the widely studied cell line PC12. Release of Ca2+ from intracellular stores and a sustained influx of Ca2+ are also observed following exposure to thapsigargin, a sesquiterpene lactone that depletes intracellular Ca2+ pools by irreversibly inhibiting the Ca2+ pump of the endoplasmic reticulum. In this study, we show that carbachol and thapsigargin empty the same intracellular Ca2+ stores, and that these stores are a subset of intracellular stores depleted by the Ca2+ ionophore ionomycin. Intracellular Ca2+ stores remain depleted during continuous stimulation of mAChR with carbachol in medium containing 2 mM extracellular Ca2+, but rapidly refill following inhibition of mAChRs with atropine. Addition of atropine to carbachol-stimulated cells causes intracellular Ca2+ levels to return to baseline levels in two steps: a rapid decrease that correlates with the reuptake of Ca2+ into internal stores and a delayed decrease that correlates with the inhibition of a Mn2+-permeable Ca2+ channel. Several lines of evidence suggest that carbachol and thapsigargin stimulate Ca2+ influx by a common mechanism: (i) pretreatment with thapsigargin occludes atropine-mediated inhibition of Ca2+ influx, (ii) carbachol and thapsigargin applied individually or together are equally efficient at stimulating the influx of Mn2+, and (iii) identical rates of Ca2+ influx are observed when Ca2+ is added to cells pretreated with carbachol, thapsigargin, or both agents in the absence of extracellular Ca2+. Taken together, these data suggest that the sustained influx of extracellular Ca2+ observed following activation of mAChRs in PC12D cells is mediated primarily by activation of a Mn2+-permeable, Ca2+ store-operated Ca2+ channel.  相似文献   

13.
We have shown that the splicing isoform of Dp71 (Dp71d) localizes to the nucleus of PC12 cells, an established cell line derived from a rat pheochromocytoma; however, the mechanisms governing its nuclear localization are unknown. As protein phosphorylation modulates the nuclear import of proteins, and as Dp71d presents several potential sites for phosphorylation, we analyzed whether Dp71d is phosphorylated in PC12 cells and the role of phosphorylation on its nuclear localization. We demonstrated that Dp71d is phosphorylated under basal conditions at serine and threonine residues by endogenous protein kinases. Dp71d phosphorylation was activated by 2-O-tetradecanoyl phorbol 13-acetate (TPA), but this effect was blocked by EGTA. Supporting the role of intracellular calcium on Dp71d phosphorylation, we observed that the stimulation of calcium influx by cell depolarization increased Dp71d phosphorylation, and that the calcium-calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (W-7) blocked such induction. The blocking action of bisindolylmaleimide I (Bis I), a specific inhibitor for Ca2+/diacylglicerol-dependent protein kinase (PKC), on Dp71d phosphorylation suggested the participation of PKC in this event. In addition, transfection experiments with Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression vectors as well as the use of KN-62, a CaMKII-specific inhibitor, demonstrated that CaMKII is also involved in Dp71d phosphorylation. Stimulation of Dp71d phosphorylation by cell depolarization and/or the overexpression of CaMKII favored the Dp71d nuclear accumulation. Overall, our results indicate that CAMKII-mediated Dp71d phosphorylation modulates its nuclear localization.  相似文献   

14.
We have addressed the question why in the presence of a Ca2+ ionophore human polymorphonuclear leukocytes generate leukotrienes in high yields, but in only low amounts after stimulation by receptor agonists like fMLF (fM, formylmethionine), leukotriene B4 or platelet-activating factor (PAF), although a significant release of intracellular calcium can be measured. Using ionomycin we can show that from the two enzymes involved, phospholipase A2 and 5-lipoxygenase, the first requires a threshold level of about 350-400 nM calcium whereas 5-lipoxygenase shows a linear dependence on calcium and saturates at this concentration. Our data indicate that the Ca2+ requirement of phospholipase A2 can only be met by an additional influx of extracellular calcium, whereas 5-lipoxygenase will operate already at levels provided by intracellular stores. Consequently, the complexing of extracellular calcium by EGTA stops phospholipase A2 activity immediately, whereas added arachidonate can be still adequately metabolized by intracellular Ca2+ release triggered by fMLF or PAF. Interestingly, PAF shows a stronger extracellular component in its Ca2+ transient than fMLF, and also generates more 5-lipoxygenase metabolites. However, a clear correlation between the amount of 5-lipoxygenase metabolites and the extracellular Ca2+ signal was lacking, since maximal activity was achieved before the bulk of the extracellular calcium was monitored. Ca2+ influx after PAF stimulation could be blocked after 2 min by EGTA, but a further increase in the formation of 5-lipoxygenase metabolites was observed. In contrast ionomycin-elicited 5-lipoxygenase activity could be stopped at any time shortly after EGTA addition.  相似文献   

15.
16.
There is evidence that extracellular nucleotides, acting through multiple P2 receptors, may play an important role in the regulation of bone metabolism by activating intracellular signaling cascades. We have studied the modulation of mitogen-activated protein kinase (MAPK) signaling pathways and its relationship to changes in intracellular calcium concentration ([Ca2+]i) induced by ATP in ROS-A 17/2.8 osteoblastic cells. ATP and UTP (10 μM) increased [Ca2+]i by cation release from intracellular stores. We have found that when the cells are subsequently subjected to mechanical stress (medium perturbation), a transient calcium influx occurs. This mechanical stress-activated calcium influx (MSACI) was not observed after ADP stimulation, indicating that P2Y2 receptor activation is required for MSACI. In addition, ERK 1/2 and p38 MAPK were activated by ATP in a dose- and time-dependent manner. This activation was almost completely blocked using neomycin (2.5 mM), an inhibitor of phosphoinositide-phospholipase C (PI-PLC), Ro 318220 (1 μM), a protein kinase C (PKC) inhibitor, and PP1 (50 μM), a potent and selective inhibitor of the Src-family tyrosine kinases. Ca2+-free extracellular medium (containing 0.5 mM EGTA) and the use of gadolinium (5 μM), which suppressed MSACI, prevented ERK 1/2 and p38 phosphorylation by ATP. Altogether, these results represent the first evidence to date suggesting that P2Y2 receptor stimulation by ATP in osteoblasts sensitizes mechanical stress activated calcium channels leading to calcium influx and a fast activation of the ERK 1/2 and p38 MAPK pathways. This effect also involves upstream mediators such as PI-PLC, PKC and Src family kinases.  相似文献   

17.
An assay for the increase in potassium permeability mediated by muscarinic acetylcholine receptors (mAChR) in cultured cardiac cells is described, using the K+ ion substitute 86Rb+ as the tracer ion. Cardiac cells accumulate 86Rb+ from the extracellular medium in a Na+/K+ ATPase-dependent manner. Subsequent efflux of 86Rb+ in the absence and presence of muscarinic agonists follows kinetics similar to those previously reported for 42K+. The mAChR agonist carbamylcholine (carbachol) stimulated 86Rb+ efflux with an EC50 of 50 nM. The half-time for efflux is reduced by greater than 40% at maximally effective concentrations of agonist. Stimulation of 86Rb+ efflux by carbachol is blocked by the mAChR antagonist atropine with an IC50 of 15 nM. The stimulation of 86Rb+ efflux by carbachol is not affected by the presence of the Na+/K+ ATPase inhibitor ouabain. This assay provides a method for quantitating the mAChR-mediated increase in K+ permeability in cardiac cells without the use of 42K+.  相似文献   

18.
19.
The zif268 gene, which encodes a protein with three typical zinc finger sequences, is induced in mouse 3T3 cells by serum, phorbol 12-myristate 13-acetate platelet-derived growth factor, and fibroblast growth factor. The induction is coordinate with that of c-fos. The 5'-flanking region of zif268 contains sequences that resemble known regulatory elements, including four CC(A or T)6GG sequences similar to the core serum response elements (SREs) found upstream of c-fos and actin genes. To determine whether the zif268 SRE-like elements mediate induction, CAT (chloramphenicol acetyltransferase) plasmids with different lengths of zif268 upstream sequences were tested for inducibility in 3T3 cells by serum, platelet-derived growth factor, or phorbol 12-myristate 13-acetate. In addition, double-stranded oligonucleotides corresponding to each of the four zif268 putative SREs were tested individually for responsiveness when placed upstream of a thymidine kinase gene promoter. Each of the four SREs conferred inducibility by the agents tested, and multiple SREs resulted in greater inducibility than did a single element. Each of the zif268 SREs also competed with the c-fos SRE for binding by serum response factor present in HeLa cell nuclear extract. We conclude that the zif268 SRE-like sequences are functional and probably account for the coordinate induction of zif268 and c-fos.  相似文献   

20.
Rat glomerular mesangial cell monolayers loaded with the fluorescent probe fura-2 responded to exogenous platelet-activating factor (PAF) with a rapid increase in cytosolic free calcium concentration ([Ca2+]i). PAF-induced [CA2+]i transients consisted of a dose-dependent phasic peak response followed by a sustained tonic phase of increased [Ca2+]i. Chelation of extracellular calcium with EGTA suppressed the tonic phase of increased [Ca2+]i but did not affect the phasic peak response. This suggests two mechanisms for the elevation of [Ca2+]i: a transient mobilization from intracellular stores and an enhanced calcium influx across the plasma membrane, possibly mediated by receptor-operated channels. Lyso-PAF had no effect on basal [Ca2+]i and the PAF-receptor antagonist L652,731 selectively inhibited responses to PAF. PAF-stimulated mesangial cells displayed homologous desensitization to reexposure to PAF while still being responsive to other calcium-mobilizing agonists. Preincubation of cells with the protein kinase C (PKC) activator phorbol myristate acetate diminished the PAF-induced [Ca2+]i transient, suggesting a regulatory role for PKC in PAF-activation of mesangial cells. An increase in [Ca2+]i, as a result of receptor-linked activation of phospholipase C, may mediate PAF-induced hemodynamic and inflammatory events in renal glomeruli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号