首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frisch M  Melchinger AE 《Genetics》2005,170(2):909-917
Marker-assisted backcrossing is routinely applied in breeding programs for gene introgression. While selection theory is the most important tool for the design of breeding programs for improvement of quantitative characters, no general selection theory is available for marker-assisted backcrossing. In this treatise, we develop a theory for marker-assisted selection for the proportion of the genome originating from the recurrent parent in a backcross program, carried out after preselection for the target gene(s). Our objectives were to (i) predict response to selection and (ii) give criteria for selecting the most promising backcross individuals for further backcrossing or selfing. Prediction of response to selection is based on the marker linkage map and the marker genotype of the parent(s) of the backcross population. In comparison to standard normal distribution selection theory, the main advantage of our approach is that it considers the reduction of the variance in the donor genome proportion due to selection. The developed selection criteria take into account the marker genotype of the candidates and consider whether these will be used for selfing or backcrossing. Prediction of response to selection is illustrated for model genomes of maize and sugar beet. Selection of promising individuals is illustrated with experimental data from sugar beet. The presented approach can assist geneticists and breeders in the efficient design of gene introgression programs.  相似文献   

2.
Near-isogenic lines (NILs) differing with regard to disease QTLs provide valuable material for a more detailed study into the genetic basis of quantitative resistance. Previously obtained information on QTLs that show an effect on leaf rust (Puccinia hordei) in barley was used in a marker-assisted backcross programme. The genome origin in backcross plants was controlled through AFLP marker analysis and graphical genotyping. Plants obtained after the third generation of backcrossing sufficiently resembled the recurrent parent. For one QTL, BC3S1 plants were evaluated in a disease test and genotyped. NILs containing the desired QTL in homozygous condition in a recipient background were finally obtained. A disease test and verification of the marker genotype confirmed the identity of the NILs. Simultaneous with the backcross programme a simulation study on efficiency of marker-assisted backcrossing was performed.  相似文献   

3.
Application of marker-assisted backcrossing for gene introgression is still limited by the high costs of marker analysis. High-throughput (HT) assays promise to reduce these costs, but new selection strategies are required for their efficient implementation in breeding programs. The objectives of our study were to investigate the properties of HT marker systems compared to single-marker (SM) assays, and to develop optimal selection strategies for marker-assisted backcrossing with HT assays. We employed computer simulations with a genetic model consisting of 10 chromosomes of 160 cM length to investigate the introgression of a dominant target gene. We found that a major advantage of HT marker systems is that they can provide linkage maps with equally spaced markers, whereas the possibility to provide linkage maps with high marker densities smaller than 10 cM is only of secondary use in marker-assisted backcrossing. A three-stage selection strategy that combines selection for recombinants at markers flanking the target gene with SM assays and genome-wide background selection with HT markers in the first backcross generation was more efficient than genome-wide background selection with HT markers alone. Selection strategies that combine SM and HT assays were more efficient than genome-wide background selection with HT assays alone. This result was obtained for a broad range of cost ratios of HT and SM assays. A further considerable reduction of the costs could be achieved if the population size in the first backcross generation was twice the population size in generations BC2 and BC3 of a three-generation backcrossing program. We conclude that selection strategies combining SM and HT assays have the potential to greatly increase the efficiency and flexibility of marker-assisted backcrossing.  相似文献   

4.
Genetic diversity of elite breeding material can be increased by introgression of exotic germplasm to ensure long-term selection response. The objective of our study was to develop and characterize the first two rye introgression libraries generated by marker-assisted backcrossing and demonstrate their potential application for improving the baking quality of rye. Starting from a cross between inbred line L2053-N (recurrent parent) and a heterozygous Iranian primitive population Altevogt 14160 (donor) two backcross (BC) and three selfing generations were performed to establish introgression libraries A and B. Amplified fragment length polymorphisms (AFLP markers) and simple sequences repeats (SSRs) were employed to select and characterize candidate introgression lines (pre-ILs) from BC(1) to BC2S3. The two introgression libraries comprise each 40 BC2S3 pre-ILs. For analyzing the phenotypic effects of the exotic donor chromosome segment (DCS) we evaluated the per se performance for pentosan and starch content in replicated field trials at each of four locations in 2005 and 2006. Introgression library A and B cover 74 and 59% of the total donor genome, respectively. The pre-ILs contained mostly two to four homozygous DCS, with a mean length of 12.9 cM (A) and 10.0 cM (B). We detected eight (A) and nine (B) pre-ILs with a significant (P<0.05) higher pentosan content and two pre-ILs (B) with a significant (P<0.05) higher starch content than the elite recurrent parent. Thus, our results indicate that exotic genetic resources in rye carry favorable alleles for baking quality traits, which can be exploited for improving the elite breeding material by marker-assisted selection (MAS). These introgression libraries can substantially foster rye breeding programs and provide a promising opportunity to proceed towards functional genomics.  相似文献   

5.
 Genome-analysis tools are useful for dissecting complex phenotypes and manipulating determinants of these phenotypes in breeding programs. Quantitative trait locus (QTL)-analysis tools were used to map QTLs conferring adult plant resistance to stripe rust (caused by Puccinia striiformis f.sp. hordei) in barley. The resistance QTLs were introgressed into a genetic background unrelated to the mapping population with one cycle of marker-assisted backcrossing. Doubled-haploid lines were derived from selected backcross lines, phenotyped for stripe-rust resistance, and genotyped with an array of molecular markers. The resistance QTLs that were introgressed were significant determinants of resistance in the new genetic background. Additional resistance QTLs were also detected. The susceptible parent contributed resistance alleles at two of these new QTLs. We hypothesize that favorable alleles were fixed at these new QTLs in the original mapping population. Genetic background may, therefore, have an important role in QTL-transfer experiments. A breeding system is described that integrates single-copy and multiplex markers with confirmation of the target phenotype in doubled-haploid lines phenotyped in field tests. This approach may be useful for simultaneously producing agronomically useful germplasm and contributing to an understanding of quantitatively inherited traits. Received: 6 May 1997 / Accepted: 1 September 1997  相似文献   

6.
Computer simulations can be employed to find optimal procedures for developing introgression libraries in rye with marker-assisted backcrossing. Our objectives were to investigate the effects of the employed (1) breeding scheme, (2) selection strategy, and (3) population sizes on the donor genome coverage of the library, the number of introgression lines carrying additional donor chromosome segments outside the target regions, and the number of required marker data points. With respect to these target criteria, a BC3S2 breeding scheme and increasing population sizes from early to advanced generations were superior to a BC2S3 breeding scheme and constant population sizes. The smallest number of donor segments outside the target regions was reached with a three-stage selection strategy, which consists on selection for the target segment, selection for recombination at flanking markers and selection for recurrent parent alleles across the entire genome. Omitting the selection for flanking markers in generation BC1 reduced considerably the number of required marker data points. A pre-selection of chromosomes consisting completely of donor genome in BC1 was advantageous, if the effort in the breeding nursery should kept minimum. Adopting the described designs can help rye breeders to successfully develop introgression libraries.  相似文献   

7.
Expenses for marker assays are the major costs in marker-assisted backcrossing programs for the transfer of target genes from a donor into the genetic background of a recipient genotype. Our objectives were to (1) investigate the effect of employing sequentially increasing marker densities over backcross generations on the recurrent parent genome (RPG) recovery and the number of marker data points (MDP) required, and (2) determine optimum designs for attaining RPG thresholds of 93–98% with a minimum number of MDP. We simulated the introgression of one dominant target gene for genome models of sugar beet (Beta vulgaris L.) and maize (Zea mays L.) with varying marker distances of 5–80 cM and population sizes of 30–250 plants across BC1 to BC3 generations. Employing less dense maps in early backcross generations resulted in savings of over 50% in the number of required MDP compared with using a constant set of markers and was accompanied only by small reductions in the attained RPG values. The optimum designs were characterized by increasing marker densities and increasing population sizes in advanced generations for both genome models. We conclude that increasing simultaneously the marker density and the population size from early to advanced backcross generations results in gene introgression with a minimum number of required MDP.  相似文献   

8.
Hybrid rice has contributed greatly to the self-sufficiency of the food supply in China. However, bacterial blight is a major disease that limits hybrid rice production in China. The study was conducted to develop an efficient breeding technique to improve the bacterial blight resistance in hybrid rice. A marker-assisted backcross breeding technique was adopted to improve HN189, an elite restorer line containing the Pi1 gene. This breeding technique was simplified to foreground selection with only one generation of backcrossing and background selection based on phenotypic selection. A novel bacterial blight resistance gene, Xa23, was introgressed into HN189. Two improved restorer lines, HBH145 (with one generation of backcrossing) and HBH146 (with two generations of backcrossing), were obtained that had a significant bacterial blight resistance advantage over HN189. The corresponding hybrid combination Tianyou H145 (Tianfeng A / HBH145) was certified one year earlier than Qianyou H146 (Qianjiang 1A / HBH146). The use of the marker-assisted backcross breeding technique with one generation of backcrossing and without background selection in rice breeding programs shortened the breeding period of the rice.  相似文献   

9.
A number of useful marker-trait associations have been reported for wheat. However the number of publications detailing the integrated and pragmatic use of molecular markers in wheat breeding is limited. A previous report by some of these authors showed how marker-assisted selection could increase the genetic gain and economic efficiency of a specific breeding strategy. Here, we present a practical validation of that study. The target of this breeding strategy was to produce wheat lines derived from an elite Australian cultivar ‘Stylet’, with superior dough properties and durable rust resistance donated from ‘Annuello’. Molecular markers were used to screen a BC1F1 population produced from a cross between the recurrent parent ‘Stylet’ and the donor parent ‘Annuello’ for the presence of rust resistance genes Lr34/Yr18 and Lr46/Yr29. Following this, marker-assisted selection was applied to haploid plants, prior to chromosome doubling with cochicine, for the rust resistance genes Lr24/Sr24, Lr34/Yr18, height reducing genes, and for the grain protein genes Glu-D1 and Glu-A3. In general, results from this study agreed with those of the simulation study. Genetic improvement for rust resistance was greatest when marker selection was applied on BC1F1 individuals. Introgression of both the Lr34/Yr18 and Lr46/Yr29 loci into the susceptible recurrent parent background resulted in substantial improvement in leaf rust and stripe rust resistance levels. Selection for favourable glutenin alleles significantly improved dough resistance and dough extensibility. Marker-assisted selection for improved grain yield, through the selection of recurrent parent genome using anonymous markers, only marginally improved grain yield at one of the five sites used for grain yield assessment. In summary, the integration of marker-assisted selection for specific target genes, particularly at the early stages of a breeding programme, is likely to substantially increase genetic improvement in wheat.  相似文献   

10.
Frisch M  Melchinger AE 《Genetics》2001,157(3):1343-1356
Recurrent backcrossing is an established procedure to transfer target genes from a donor into the genetic background of a recipient genotype. By assessing the parental origin of alleles at markers flanking the target locus one can select individuals with a short intact donor chromosome segment around the target gene and thus reduce the linkage drag. We investigated the probability distribution of the length of the intact donor chromosome segment around the target gene in recurrent backcrossing with selection for heterozygosity at the target locus and homozygosity for the recurrent parent allele at flanking markers for a diploid species. Assuming no interference in crossover formation, we derived the cumulative density function, probability density function, expected value, and variance of the length of the intact chromosome segment for the following cases: (1) backcross generations prior to detection of a recombinant individual between the target gene and the flanking marker; (2) the backcross generation in which for the first time a recombinant individual is detected, which is selected for further backcrossing; and (3) subsequent backcross generations after selection of a recombinant. Examples are given of how these results can be applied to investigate the efficiency of marker-assisted backcrossing for reducing the length of the intact donor chromosome segment around the target gene under various situations relevant in breeding and genetic research.  相似文献   

11.
Introgression libraries facilitate the identification of favorable exotic alleles or genomic regions, which can be exploited for improving elite breeding material. We evaluated the first two introgression libraries in rye (Secale cereale L.) on the phenotypic and molecular level. Our objectives were to detect candidate introgression lines (pre-ILs) with a better testcross performance than the recurrent parent and identify donor chromosome segments (DCS) responsible for the improved performance. We introduced DCS from the self-incompatible heterozygous exotic Iranian primitive rye accession Altevogt 14160 (donor) into the genetic background of the elite inbred line L2053-N (recurrent parent) by marker-assisted backcrossing and developed 40 BC2S3 lines in each introgression library. Testcross performance for three agronomic and six quality traits was evaluated in replicated field trials across two testers at five locations over 2 years. The phenotypic effect of the DCS was analyzed for all traits. The pre-ILs had on average a testcross performance comparable to that of the recurrent parent. Significant (P < 0.05) differences between individual pre-ILs and the recurrent parent were detected for all traits except for heading date. For more than 60% of the significant (P < 0.05) differences, the pre-ILs were superior to the recurrent parent. For some pre-ILs, specific DCS were identified containing presumably quantitative trait loci responsible for the superior hybrid performance. Consequently, our study revealed that the development and employment of introgression libraries offers the opportunity for a targeted increase of genetic diversity of elite rye material for hybrid performance of agronomically important traits.  相似文献   

12.
Marker-assisted introgression or backcrossing is a widely used method to improve commercial breeding lines or study the effects of genes in a homogeneous genetic background. In this context, the recovery of the recipient parent genome is a major objective of backcrossing. Selection on markers has been shown to be very useful to accelerate the rate of recovery of the recipient parent genome in backcrossing. In this study we show how much information markers give on the true genetic composition of individuals by deriving the variance and estimating the distribution of the genetic composition of individuals sharing a known genotype at markers. These calculations enable predictions of the number of individuals carrying an ideal genotype at markers that must be produced to fulfil background selection objectives.  相似文献   

13.
Summary Genes introduced into cultivated plants by backcross breeding programs are flanked by introgressed segments of DNA derived from the donor parent. This phenomenon is known as linkage drag and is frequently thought to affect traits other than the one originally targeted. The Tm-2 gene of Lycopersicon peruvianum, which confers resistance to tobacco mosaic virus, was introduced into several different tomato cultivars (L. esculentum) by repeated backcrossing. We have measured the sizes of the introgressed segments flanking the Tm-2 locus in several of these cultivars using a high density map of restriction fragment length polymorphic (RFLP) markers. The smallest introgressed segment is estimated to be 4 cM in length, while the longest is over 51 cM in length and contains the entire short arm of chromosome 9. Additionally, RFLP analysis was performed on remnant seed from different intermediate generations corresponding to two different backcross breeding programs for TMV resistance. The results reveal that plants containing desirable recombination near the resistance gene were rarely selected during backcrossing and, as a result, the backcross breeding method was largely ineffective in reducing the size of linked DNA around the resistance gene. We propose that, by monitoring recombination around genes of interest with linked RFLP markers, one can quickly and efficiently reduce the amount of linkage drag associated with introgression. Using such a procedure, it is estimated that an introgressed segment can be obtained in two generations that is as small as that which would otherwise require 100 backcross generations without RFLP selection.  相似文献   

14.
大豆SSR标记辅助遗传背景选择的效果分析   总被引:13,自引:2,他引:11  
本研究利用鲁豆4号回交转育的大豆种子脂氧酶缺失株系为材料,用IEF-PAGE鉴定大豆种子脂氧酶缺失基因,SSR标记进行遗传背景分析,通过遗传背景回复率相关分析,探索分子标记辅助遗传背景选择时所需的适宜的标记数和选择方式,期望获得可进一步回的鲁豆4号脂氧酶缺失株系。研究明确了大豆SSR标记辅助背景选择时适宜标记数目和选择方式,即先用少数标记初筛,选出遗传背景回复率较高的材料,再用适宜标记鉴定,随着世代递增,已恢复为轮回亲本的标记住点不再分析,逐代减少选择标记数目。获得了合有脂氧酶缺失基因,遗传背景与鲁豆4号差异较小的株系,可用鲁玉4号进一步回交,从而加速培育鲁豆4号脂氧酶缺失近等基因系。  相似文献   

15.
The limited number of papaya varieties available reflects the narrow genetic base of this species. The use of backcrossing as a breeding strategy can promote increases in variability, besides allowing targeted improvements. Procedures that combine the use of molecular markers and backcrossing permit a reduction of the time required for introgression of genes of interest and appropriate recovery of the recurrent genome. We used microsatellite markers to characterize the effect of first-generation backcrosses of three papaya progeny, by monitoring the level of homozygosity and the parental genomic ratio. The homozygosity level in the population ranged from 74 to 94%, with a mean of 85% for the three progenies (52-08, 52-29 and 52-34). The high level of inbreeding found among these genotypes increases the expectation of finding more than 95% fixed loci in the next generation of self-fertilization of superior genotypes. The mean proportion of the recurrent parent genome found in first-generation backcross progeny was 50.1%; 52-34 had a larger genomic region in common with the recurrent genitor and the lowest level of homozygosity. The progeny 52-08 was genetically closest to the donor genitor, and it also had the highest level of homozygosity. We found that linking conventional procedures and molecular markers contributed to an increase in the efficiency of the breeding program.  相似文献   

16.
The feasibility of constructing an overlapping part-chromosome substitution library between the Landsberg erecta (Ler) and Columbia (Col ) ecotypes of Arabidopsis thaliana was investigated using computer simulations. Such a library can be used effectively in the fine mapping of quantitative trait loci (QTLs) in this species, with donor tracts of Col inserted into the recurrent background of Ler and vice versa. The study was based on the known RFLP profiles of Ler and Col ecotypes, and of some selected recombinant inbred lines (RILs) that have already been extracted from their cross by self pollination. It was shown that homozygous substitution lines can be produced for a large segment of the genome (>80%) by crossing just 11 RILs with their respective recurrent/recipient parents and selecting the desired recombinants from the F2 or Bc1 generation or their selfed progenies. In the case of four RILs, however, at least two rounds of backcrossing were deemed necessary to remove the unwanted donor tracts from the background genotype prior to selfing/selection. The simulations also provided valuable information on the scale of the breeding programme and show that a resource of up to 59 substitutions can be produced within a short period of 4-5 generations.Contributed equally;  相似文献   

17.
The Bacillus thuringiensis ??-endotoxin and cowpea trypsin inhibitor genes have been introduced into the rice genome to improve its pest resistance via Agrobacterium-mediated transformation. A gas chromatography-mass spectrometry (GC?CMS) based metabolic profiling method was employed to determine the unpredictable metabolic changes resulting from the gene insertion and tissue culture separately. Descendants of the same transformant were obtained from different breeding programs, including both the transgenic and null-segregant progeny. The comparison of the transgenic and respective null-segregant plants enabled the evaluation of variations caused by transgenes; also the null-segregant plants were compared with the wild-type control to identify the influence of tissue culture. Based on the GC?CMS metabolic profiles, the principal component analysis and significant differences determined by Student??s t-test suggested that there were more metabolic changes from the tissue culture than those from the insertion of the transgenes. By comparing different breeding programs, it was clear that the progeny which was developed after several generations of backcross with the non-transformed rice as the recurrent parent, displayed fewer metabolic differences from the non-transformed parent. A GC?CMS based metabolic profiling study confirmed that backcrossing can help to reduce unwanted variations that occur during transformation processes.  相似文献   

18.
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.  相似文献   

19.
A strategy combining single backcrossing with selected bulk breeding has been successfully used in wheat improvement at CIMMYT to introgress rust resistant genes from donor parents to elite adapted cultivars. In this research, the efficiency of this breeding strategy was compared to other crossing and selection strategies through computer simulation. Results indicated this breeding strategy has advantages in retaining or improving the adaptation of the recurrent parents, and at the same time transferring most of the desired donor genes in a wide range of scenarios. Two rounds of backcrossing have advantages when the adaptation of donor parents is much poorer than that of the adapted parents, but the advantage of three rounds of backcrossing over two rounds is minimal. We recommend using the single backcrossing breeding strategy (SBBS) when three conditions are met: (1) multiple genes govern the phenotypic traits to be transferred from donor parents to adapted parents, (2) the donor parents have some favorable genes that may contribute to the improvement of adaptation in the recipient parents, and (3) conventional phenotypic selection is being applied, or individual genotypes cannot be precisely identified. We envisage that all three conditions commonly exist in modern breeding programs, and therefore believe that SBBS could be applied widely. However, we do not exclude the use of repeated backcrossing if the transferred genes can be precisely identified by closely linked molecular markers, and the donor parents have extremely poor adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号