首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postprandial hypotension is an important problem, particularly in the elderly. The fall in blood pressure is dependent on small intestinal glucose delivery and, possibly, changes in splanchnic blood flow, the release of glucagon-like peptide-1 (GLP-1), and sympathetic nerve activity. We aimed to determine in healthy older subjects, the effects of variations in small intestinal glucose load on blood pressure, superior mesenteric artery flow, GLP-1, and noradrenaline. Twelve subjects (6 male, 6 female; ages 65-76 yr) were studied on four separate occasions, in double-blind, randomized order. On each day, subjects were intubated via an anesthetized nostril, with a nasoduodenal catheter, and received an intraduodenal infusion of either saline (0.9%) or glucose at a rate of 1, 2, or 3 kcal/min (G1, G2, G3, respectively), for 60 min (t = 0-60 min). Between t = 0 and 60 min, there were falls in systolic and diastolic blood pressure following G2 and G3 (P = 0.003 and P < 0.001, respectively), but no change during saline or G1. Superior mesenteric artery flow increased slightly during G1 (P = 0.01) and substantially during G2 (P < 0.001) and G3 (P < 0.001), but not during saline. The GLP-1 response to G3 was much greater (P < 0.001) than to G2 and G1. Noradrenaline increased (P < 0.05) only during G3. In conclusion, in healthy older subjects the duodenal glucose load needs to be > 1 kcal/min to elicit a significant fall in blood pressure, while the response may be maximal when the rate is 2 kcal/min. These observations have implications for the therapeutic strategies to manage postprandial hypotension by modulating gastric emptying.  相似文献   

2.
The primary aims of this study were to evaluate the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) on gastric emptying (GE) of, and the blood pressure (BP), glycemic, insulin, and incretin responses to, oral glucose in older subjects. Eight healthy subjects (4 males and 4 females, aged 70.9 +/- 1.3 yr) were studied on two separate days, in double-blind, randomized order. Subjects received an intravenous infusion of either l-NAME (180 mug.kg(-1).h(-1)) or saline (0.9%) at a rate of 3 ml/min for 150 min. Thirty minutes after the commencement of the infusion (0 min), subjects consumed a 300-ml drink containing 50 g glucose labeled with 20 MBq (99m)Tc-sulfur colloid, while sitting in front of a gamma camera. GE, BP (systolic and diastolic), heart rate (HR), blood glucose, plasma insulin, and incretin hormones, glucose-dependant insulinotropic-polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), were measured. l-NAME had no effect on GE, GIP, and GLP-1. Between -30 and 0 min l-NAME had no effect on BP or HR. After the drink (0-60 min), systolic and diastolic BP fell (P < 0.05) and HR increased (P < 0.01) during saline; these effects were attenuated (P < 0.001) by l-NAME. Blood glucose levels between 90 and 150 min were higher (P < 0.001) and plasma insulin were between 15 and 150 min less (P < 0.001) after l-NAME. The fall in BP, increase in HR, and stimulation of insulin secretion by oral glucose in older subjects were mediated by NO mechanisms by an effect unrelated to GE or changes in incretin hormones.  相似文献   

3.
4.
The importance of the region, as opposed to the length, of small intestine exposed to glucose in determining the secretion of the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) remains unclear. We sought to compare the glycemic, insulinemic and incretin responses to glucose administered to the proximal (12–60 cm beyond the pylorus), or more distal ( > 70 cm beyond the pylorus) small intestine, or both. 10 healthy subjects (9M,1F; aged 70.3 ± 1.4 years) underwent infusion of glucose via a catheter into the proximal (glucose proximally; GP), or distal (glucose distally; GD) small intestine, or both (GPD), on three separate days in a randomised fashion. Blood glucose, serum insulin and plasma GLP-1, GIP and CCK responses were assessed. The iAUC for blood glucose was greater in response to GPD than GP (P < 0.05), with no difference between GD and GP. GP was associated with minimal GLP-1 response (P = 0.05), but substantial increases in GIP, CCK and insulin (P < 0.001 for all). GPD and GD both stimulated GLP-1, GIP, CCK and insulin (P < 0.001 for all). Compared to GP, GPD induced greater GLP-1, GIP and CCK responses (P < 0.05 for all). Compared with GPD, GD was associated with greater GLP-1 (P < 0.05), but reduced GIP and CCK (P < 0.05 for both), responses. We conclude that exposure of glucose to the distal small intestine appears necessary for substantial GLP-1 secretion, while exposure of both the proximal and distal small intestine result in substantial secretion of GIP.  相似文献   

5.
Postprandial hypotension (PPH) occurs frequently in the elderly; the magnitude of the fall in blood pressure (BP) is related to the rate of glucose entry into the duodenum during intraduodenal glucose infusion and spontaneous gastric emptying (GE). It is unclear if glucose concentration affects the hypotensive response. Gastric distension may attenuate PPH; therefore, meal volume could influence the BP response. We aimed to determine the effects of 1) drink volume, 2) glucose concentration, and 3) glucose content on the BP and heart rate (HR) responses to oral glucose. Ten subjects (73.9 +/- 1.2 yr) had measurements of BP, GE, and blood glucose on 4 days after 1) 25 g glucose in 200 ml (12.5%), 2) 75 g glucose in 200 ml (37.5%), 3) 25 g glucose in 600 ml (4%), and 4) 75 g glucose in 600 ml (12.5%). GE, BP, HR, and blood glucose were measured for 180 min. After all drinks, duodenal glucose loads were similar in the first 60 min. Regardless of concentration, 600-ml (but not 200-ml) drinks initially increased BP, and in the first 30 min, systolic BP correlated (P < 0.01) with volume in both the proximal and total stomach. At the same concentration (12.5%), systolic BP fell more (P = 0.02) at the smaller volume; at the same volumes, there were no effects of concentration on BP. There was no difference in the glycemic response to drinks of identical glucose content. We conclude that 1) ingestion of glucose at a higher volume attenuates and 2) under constant duodenal load, glucose concentration (4-37%) does not affect the fall in BP.  相似文献   

6.
The aim of this study was to investigate effects of synchronized intestinal electrical stimulation (SIES) on small intestinal motility in dogs. Seventeen dogs were equipped with a duodenal cannula for the measurement of small bowel motility using manometry; an additional cannula was equipped in six of the dogs with 1.5 m distal to the first one for the measurement of small intestinal transit. Two pairs of bipolar electrodes were implanted on the small intestinal serosa with an interval of 5 cm; glucagon was used to induce postprandial intestinal hypomotility. Eleven dogs were used for the assessment of the small intestinal contractions in both fasting and fed states. The other six dogs were used for the measurement of small intestinal transit. We found that 1) SIES induced small intestinal contractions during phase I of the migrating motor complex (MMC) (contractile index or CI: 5.2 +/- 0.6 vs. 10.3 +/- 0.7, P = 0.003); 2) in the fed state, SIES significantly improved glucagon-induced small intestinal postprandial hypomotility (CI: 3.4 +/- 0.5 vs. 6.0 +/- 0.3, P = 0.03); 3) SIES significantly accelerated small intestinal transit delayed by glucagon (70.4 +/- 3.1 vs. 44.5 +/- 3.1 min, P < 0.01); 4) there was a negative correlation between the CI and transit time (r = -0.427, P = 0.048); and 5) the excitatory effect of SIES was blocked by atropine. SIES may have a therapeutic potential for treating patients with small intestinal disorders.  相似文献   

7.
Gastric emptying is a major determinant of glycemia, gastrointestinal hormone release, and appetite. We determined the effects of different intraduodenal glucose loads on glycemia, insulinemia, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK), antropyloroduodenal motility, and energy intake in healthy subjects. Blood glucose, plasma hormone, and antropyloroduodenal motor responses to 120-min intraduodenal infusions of glucose at 1) 1 ("G1"), 2) 2 ("G2"), and 3) 4 ("G4") kcal/min or of 4) saline ("control") were measured in 10 healthy males in double-blind, randomized fashion. Immediately after each infusion, energy intake at a buffet meal was quantified. Blood glucose rose in response to all glucose infusions (P < 0.05 vs. control), with the effect of G4 and G2 being greater than that of G1 (P < 0.05) but with no difference between G2 and G4. The rises in insulin, GLP-1, GIP, and CCK were related to the glucose load (r > 0.82, P < 0.05). All glucose infusions suppressed antral (P < 0.05), but only G4 decreased duodenal, pressure waves (P < 0.01), resulted in a sustained stimulation of basal pyloric pressure (P < 0.01), and decreased energy intake (P < 0.05). In conclusion, variations in duodenal glucose loads have differential effects on blood glucose, plasma insulin, GLP-1, GIP and CCK, antropyloroduodenal motility, and energy intake in healthy subjects. These observations have implications for strategies to minimize postprandial glycemic excursions in type 2 diabetes.  相似文献   

8.
The postprandial reduction in blood pressure (BP) is triggered by the interaction of nutrients with the small intestine and associated with an increase in splanchnic blood flow. Gastric distension may attenuate the postprandial fall in BP. The aim of this study was to determine the effects of differences in intragastric volume, including distension at a low (100 ml) volume, on BP and superior mesenteric artery (SMA) blood flow responses to intraduodenal glucose in healthy older subjects. BP and heart rate (HR; automated device), SMA blood flow (Doppler ultrasound), mesenteric vascular resistance (MVR), and plasma norepinephrine of nine male subjects (65-75 yr old) were measured after an overnight fast on 4 separate days in random order. On each day, subjects were intubated with a nasoduodenal catheter, incorporating a duodenal infusion port, and orally with a second catheter, incorporating a barostat bag, positioned in the fundus. Each subject received a 60-min (t = 0-60 min) intraduodenal glucose infusion (3 kcal/min) and gastric distension at a volume of 1) 0 ml (V0), 2) 100 ml (V100), 3) 300 ml (V300), or 4) 500 ml (V500). Systolic BP fell (P < 0.05) during V0, but not during V100, V300, or V500. In contrast, HR (P < 0.01) and SMA blood flow (P < 0.001) increased and MVR decreased (P < 0.05) comparably on all 4 days. Plasma norepinephrine rose (P < 0.01) in response to intraduodenal glucose, with no difference between the four treatments. There was a relationship between the areas under the curve for the change in systolic BP from baseline with intragastric volume (r = 0.60, P < 0.001). In conclusion, low-volume (≤100 ml) gastric distension has the capacity to abolish the fall in BP induced by intraduodenal glucose in healthy older subjects without affecting SMA blood flow or MVR. These observations support the concept that nonnutrient gastric distension prior to a meal has potential therapeutic applications in the management of postprandial hypotension.  相似文献   

9.
10.
11.
Mesolimbic dopamine pathways play a critical role in the behavioural effects of cocaine in rodents. Nonetheless, research has also demonstrated involvement of 5-hydroxytryptamine (5-HT; serotonin) transmission in these effects. The present study investigated the ability of selective 5-HT1B receptor ligands and a 5-HT reuptake inhibitor to substitute for or to alter (enhance or antagonise) the discriminative stimulus effects of cocaine. Male Wistar rats were trained to discriminate cocaine (10 mg/kg, i.p.) from saline (i.p.) in a two-choice, water-reinforced fixed ratio (FR) 20 drug discrimination paradigm. In substitution tests, the selective 5-HT1B receptor agonist 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253; 2.5-5 mg/kg, i.p.) and the 5-HT reuptake inhibitor fluoxetine (5-10 mg/kg, i.p.) elicited ca. 40 and 0% drug-lever responding, respectively. In combination experiments, CP 94253 (2.5-5 mg/kg) given with submaximal doses of cocaine (0.3-2.5 mg/kg) produced a leftward shift in the cocaine dose-response curve; pretreatment with CP 94253 (5 mg/kg) prior to a dose of cocaine (2.5 mg/kg) which elicited lower than 40% drug-lever responding, caused full substitution. Fluoxetine (5 and 10 mg/kg) given in combination with a submaximal dose of cocaine (2.5 mg/kg) produced a 100% drug-lever responding. Pretreatment with the 5-HT1B receptor antagonists N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-1,1'-biphenyl-4 carboxamide (GR 127935; 0.5-5 mg/kg, s.c.) and 3-(3-dimethylamino)-propyl)-4-hydroxy-N-[4-(4-pyridinyl)-phenyl]benzamide (GR 55562; 1 mg/kg, s.c.) failed to modulate the dose-effect curve for cocaine (0.6-5 mg/kg). On the other hand, GR 127935 (5 mg/kg) and GR 55562 (1 mg/kg) significantly attenuated the enhancement of cocaine discrimination evoked by a combination of CP 94253 (5 mg/kg) or fluoxetine (5 mg/kg) and cocaine (2.5 mg/kg). These results indicate that 5-HT1B receptors are not directly involved in the cocaine-induced discriminative stimuli in rats. On the other hand, they indicate that pharmacological stimulation of 5-HT receptors--that also seem to be a target for fluoxetine-mediated increase in 5-HT neurotransmission--can enhance the overall effects of cocaine.  相似文献   

12.
13.
Nagakura Y  Kiso T  Ito H  Miyata K  Yamaguchi T 《Life sciences》2000,66(24):PL331-PL338
The role of 5-hydroxytryptamine (5-HT)3 and 5-HT4 receptors in the regulation of gut motility in the ferret was investigated. The selective 5-HT3 receptor antagonist ramosetron (1 - 10 microg/kg s.c.) prolonged the interval of gastric antral migrating motor complex, but had only slight effect on small intestinal and colonic motility in unfed animals. The selective 5-HT4 receptor antagonist SB 204070 did not affect motility throughout gut in unfed animals. Neither ramosetron nor SB 204070 affected the motility throughout gut in fed animals. In conclusion, neither 5-HT3 nor 5-HT4 receptors tonically regulate ferret gut motility except that 5-HT3 receptors have a key role in the occurrence of migrating motor complex specifically in the stomach. The role of 5-HT3 and 5-HT4 receptor system in the regulation of gut motility in ferrets is similar to that in other mammalian species studied, including humans. This similarity suggests that the ferret is a suitable model animal to study gut motor functions in humans.  相似文献   

14.
The salt intake of an organism controls the number of renin-producing cells in the kidney by yet undefined mechanisms. This study aimed to assess a possible mediator role of preglomerular blood pressure in the control of renin expression by oral salt intake. We used wild-type (WT) mice and mice lacking angiotensin II type 1a receptors (AT(1a)-/-) displaying an enhanced salt sensitivity to renin expression. In WT kidneys, we found renin-expressing cells at the ends of all afferent arterioles. A low-salt diet (0.02%) led to a moderate twofold increase in renin-expressing cells along afferent arterioles. In AT(1a)-/- mice, lowering of salt content led to a 12-fold increase in renin expression. Here, the renin-expressing cells were distributed along the preglomerular vascular tree in a typical distal-to-proximal distribution gradient which was most prominent at high salt intake and was obliterated at low salt intake by the appearance of renin-expressing cells in proximal parts of the preglomerular vasculature. While lowering of salt intake produced only a small drop in blood pressure in WT mice, the marked reduction of systolic blood pressure in AT(1a)-/- mice was accompanied by the disappearance of the distribution gradient from afferent arterioles to arcuate arteries. Unilateral renal artery stenosis in AT(1a)-/- mice on a normal salt intake produced a similar distribution pattern of renin-expressing cells as did low salt intake. Conversely, increasing blood pressure by administration of the NOS inhibitor N-nitro-l-arginine methyl ester or of the adrenergic agonist phenylephrine in AT(1a)-/- mice kept on low salt intake produced a similar distribution pattern of renin-producing cells as did normal salt intake alone. These findings suggest that changes in preglomerular blood pressure may be an important mediator of the influence of salt intake on the number and distribution of renin-producing cells in the kidney.  相似文献   

15.
16.
Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [14C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [14C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.  相似文献   

17.
Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.  相似文献   

18.
甘草对大鼠小肠动力功能影响的实验研究   总被引:5,自引:0,他引:5  
目的:初步探讨甘草对大鼠小肠动力的作用,及其作用与胃肠激素的相关性.方法:观察甘草组与空白组移行性综肌电(MMC)周期持续时间、Ⅲ相持续时间、Ⅲ相每分钟快波数(FM)和每簇的快波数(FC)的变化;采用免疫组织化学法结合显微图像定量分析扫描系统检测十二指肠、空肠嗜铬细胞及其肌间神经丛中5-羟色胺(5-HT)、P-物质(SP)、血管活性肠肽(VIP)的相对含量.结果:①甘草组与空白组比较MMCⅢ相FM和FC明显减少,MMC周期明显延长,Ⅲ相持续时间明显缩短,统计有显著性差异(P<0.05).②甘草组十二指肠、空肠粘膜及肌间神经丛内5-HT表达明显较空白组减少,比较有显著性差异,小肠粘膜无明显SP、VIP阳性免疫反映物表达,但小肠肌间神经丛内SP含量明显减少、VIP含量明显增加,组间比较有显著性差异(P<0.05,P<0.01).结论:甘草对大鼠小肠动力有抑制作用,这种抑制作用与5-HT、SP、VIP分泌失调密切相关.  相似文献   

19.
Both load and duration of small intestinal lipid infusion affect antropyloroduodenal motility and CCK and peptide YY (PYY) release at loads comparable to and higher than the normal gastric emptying rate. We determined 1) the effects of intraduodenal lipid loads well below the mean rate of gastric emptying on, and 2) the relationships between antropyloroduodenal motility, CCK, PYY, appetite, and energy intake. Sixteen healthy males were studied on four occasions in double-blind, randomized fashion. Antropyloroduodenal motility, plasma CCK and PYY, and appetite perceptions were measured during 50-min IL (Intralipid) infusions at: 0.25 (IL0.25), 1.5 (IL1.5), and 4 (IL4) kcal/min or saline (control), after which energy intake at a buffet meal was quantified. IL0.25 stimulated isolated pyloric pressure waves (PWs) and CCK release, albeit transiently, and suppressed antral PWs, PW sequences, and hunger (P < 0.05) but had no effect on basal pyloric pressure or PYY when compared with control. Loads >/= 1.5 kcal/min were required for the stimulation of basal pyloric pressures and PYY and suppression of duodenal PWs (P < 0.05). All of these effects were related to the lipid load (R > 0.5 or < -0.5, P < 0.05). Only IL4 reduced energy intake (in kcal: control, 1,289 +/- 62; IL0.25, 1,282 +/- 44; IL1.5, 1,235 +/- 71; and IL4, 1,139 +/- 65 compared with control and IL0.25, P < 0.05). In conclusion, in healthy males the effects of intraduodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, appetite, and energy intake are load dependent, and the threshold loads required to elicit responses vary for these parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号