首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat reactions of male and female Caucasians   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work.Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work.  相似文献   

5.
Mean skin temperature (Tsk) was measured in 24 subjects during experiments in a climatic chamber. Three conditions of ambient temperature (Ta = 25.6 degrees, 28.9 degrees and 32.2 degrees C), and three of humidity (relative humidity = 50%, 70% and 90%) were studied. A relationship was established by a linear regression technique. It is valid in the 24 degree-34 degree C range, for air velocity = 0.2 m.s-1, clothing insulation = 0.077 degrees C.m2.w-1 (0.5 clo), metabolic rate = 64 w.m-2 (1.1 met) and radiant temperature = air temperature. In these conditions Tsk = 28.125 + 0.021 Pw + 0.210 Ta (Pw: ambient water vapour pressure in mb). It shows a small humidity influence. The influences of sex, transition from one condition to the next, and air velocity were also studied. Measurements in Africa confirmed the small influence of humidity. Ethnic life-style differences indicated that a high precision in Tsk determination is difficult to achieve.  相似文献   

6.
7.
Several North American broad-leaved tree species range from the northern United States at 47°N to moist tropical montane forests in Mexico and Central America at 15–20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from –10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.  相似文献   

8.
The concept of cool pools aims to provide energy efficient cooling to building spaces in warm humid climates. Energy efficiency of this method is achieved by limiting the volume of air to be cooled and the degree to which it is cooled. This is achieved by retaining the cooled air by gravity in insulated depressions approximately 1 m deep and limiting cooling to within 1°C of the ambient air dew point. This technique allows the remainder of the space above the cooled air to be naturally ventilated. Typical air flow patterns in cavities are shown together with cooling losses between cool and warm air measured from a full-scale test facility. The degree of cooling possible in cool pools without causing condensation is indicated for a range of temperatures and relative humidities.  相似文献   

9.
10.
11.
A biogeographic zone with high oceanicity is a well described feature of the European Atlantic region. This oceanic zone intersects with a zone of European temperate rainforest that has received increasing conservation recognition. Although having a degree of spatial overlap, the terminology applied to these different zones is not synonymous. Temperate rainforest is one example of an oceanic system, alongside others such as blanket bog or liverwort heath. Conversely, oceanic systems provide one type of climatic setting suitable to the development of temperate rainforest, alongside other and contrasting landscapes such as the orographic climate of continental mountains. Zones of high oceanicity and temperate rainforest are both strongly represented in the British Isles, and this study examines the degree of spatial overlap in Britain for standard definitions of each. Lichen epiphyte indicators associated with zones of oceanic woodland or temperate rainforest were quantified, and subsequently tested for conservation priority Atlantic oakwoods (Annex 1 Habitat Code 91A0: old sessile oak woods with Ilex and Blechnum in the British Isles). Discrepancies between oceanic woodland and temperate rainforest led to slightly different sets of indicator species that could be applied in biodiversity and habitat quality assessments. The definition of oceanic systems appeared to include warmer and lowland situations for example in coastal Wales and south-west England. In contrast, temperate rainforest extended to cooler upland areas in north-eastern Scotland. The species indicators for oceanic and temperate rainforest were nevertheless effective in identifying sites with different conservation priorities, such as for protection or restoration.  相似文献   

12.
Very little is known about the capacity of soil chytrids to withstand freezing in the field. Tolerance to freezing was tested in 21 chytrids isolated from cropping and undisturbed soils in temperate Australia. Samples of thalli grown on peptone–yeast–glucose (PYG) agar were incubated for seven days at −15 °C. Recovery of growth after thawing and transferring to fresh medium at 20 °C indicated survival. All isolates in the Blastocladiales and Spizellomycetales survived freezing in all tests. All isolates in the Chytridiales also survived freezing in some tests. None of the isolates in the Rhizophydiales survived freezing in any of the tests. However, some isolates in the Rhizophydiales recovered growth after freezing if they were grown on PYG agar supplemented with either 1 % sodium chloride or 1 % glycerol prior to freezing. After freezing, the morphology of the thalli of all isolates was observed under LM. In those isolates that recovered growth after transfer to fresh media, mature zoosporangia were observed in the monocentric isolates and resistant sporangia or resting spores in the polycentric isolates. Encysted zoospores in some monocentric isolates also survived freezing. In some of the experiments the freezing and thawing process caused visible structural damage to the thalli. The production of zoospores after freezing and thawing was also used as an indicator of freeze tolerance. The chytrids in this study responded differently to freezing. These data add significantly to our limited knowledge of freeze tolerance in chytrids but leave many questions unanswered.  相似文献   

13.
Arthrospira (Spirulina) platensis M2 was grown outdoors in 50-mm diameter tubular reactors under the climatic conditions of central Italy (Florence) from September to December 1995 and in March 1996. Except for September, the cultures temperature was regulated. Mean productivities of 0.83, 0.44 and 0.61 g dry wt L–1 d–1 were achieved in autumn (September–October), winter (November–December) and March, respectively. In autumn and winter, the photosynthetic efficiency of the cultures and the degree of correlation between productivity and solar irradiance were significantly greater than in summer. The effect of cell density and aeration rate on productivity was evaluated in September. The productivity of cultures operated at high supra-optimal population density was about 30% less at high aeration rate (1.0 LL–1 min–1), and 50% less at standard aeration rate (0.17 LL–1 min–1), than that of control cultures kept at optimal population density and standard aeration rate. The reduction of productivity in high-density cultures was due to lower daylight output rates and higher night biomass losses (the latter were particularly relevant under standard aeration conditions). The main factor limiting productivity in closed reactors during autumn was the night temperature. Heating the cultures during daylight hours on sunny days did not cause any significant increase of the yields, since under sunlight the unheated cultures also reached the optimal temperature for growth early in the morning. On cloudy days, the day-time temperature of the unheated cultures remained well below the optimum, however this had only a limited effect on productivity since algal growth was mainly light-limited.  相似文献   

14.
1. We examined the detailed temperature dependence (0–40 °C) of bacterial metabolism associated with fine sediment particles from three Danish lowland streams to test if temperature dependence varied between sites, seasons and quality of organic matter and to evaluate possible consequences of global warming. 2. A modified Arrhenius model with reversible denaturation at high temperatures could account for the temperature dependence of bacterial metabolism and the beginning of saturation above 35 °C and it was superior to the unmodified Arrhenius model. Both models overestimated respiration rates at very low temperatures (<5 °C), whereas Ratkowsky's model – the square root of respiration – provided an excellent linear fit between 0 and 30 °C. 3. There were no indications of differences in temperature dependence among samples dominated by slowly or easily degradable organic substrates. Optimum temperature, apparent minimum temperature, Q10‐values for 0–40 °C and activation energies of bacterial respiration were independent of season, stream site and degradability of organic matter. 4. Q10‐values of bacterial respiration declined significantly with temperature (e.g. 3.31 for 5–15 °C and 1.43 for 25–35 °C) and were independent of site and season. Q10‐values of bacterial production behaved similarly, but were significantly lower than Q10‐values of respiration implying that bacterial growth efficiency declined with temperature. 5. A regional warming scenario for 2071–2100 (IPCC A2) predicted that mean annual temperatures will increase by 3.5 °C in the air and 2.2–4.3 °C in the streams compared with the control scenario for 1961–1990. Temperature is expected to rise more in cool groundwater‐fed forest springs than in open, summer‐warm streams. Mean annual bacterial respiration is estimated to increase by 26–63% and production by 18–41% among streams assuming that established metabolism–temperature relationships and organic substrate availability remain the same. To improve predictions of future ecosystem behaviour, we further require coupled models of temperature, hydrology, organic production and decomposition.  相似文献   

15.
16.
Reactions of men working in hot and humid conditions   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
This study describes the thermoregulatory and metabolic responses during a simulated half-marathon (21 km) run performed outdoors in a hot, humid environment. Ten male runners were recruited for the study, The run was carried out individually under solar radiation on a predetermined path in the following environmental conditions (ambient temperature: 27.96 ± 1.70 °C, globe temperature: 28.52 ± 2.51 °C, relative humidity: 76.88 ± 7.49%, wet bulb globe temperature: 25.80 ± 1.18 °C). Core temperature, skin temperature, head temperature, heat storage, heart rate, expired gases, rating of perceived exertion, and speed were measured or calculated before the start, every 3 km, and immediately following the run. Comparisons were made for each dependent variable using one-way repeated measures analysis of variance tests, and a Bonferroni test. Average run time and pace were 101:00 ± 9:52 min and 4:48 ± 00:16 min km-1, respectively. Participants significantly reduced their running speed, oxygen consumption, and heat storage at 9 km (p < 0.05). While core temperature was significantly increased at 6 km (p < 0.05) before plateauing for the remainder of the run. The key finding was that most of the runners reduced their pace when a Tcore of 39 °C was reached which occurred between 6 and 9 km of the run, yet runners were able to increase their speed demonstrating an “end-spurt” near the end of the run.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号