首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To trigger an effective T cell-mediated immune response in the skin, cutaneous dendritic cells (DC) migrate into locally draining lymph nodes, where they present Ag to naive T cells. Little is known about the interaction of DC with the various cellular microenvironments they encounter during their migration from the skin to lymphoid tissues. In this study, we show that human DC generated from peripheral blood monocytes specifically interact with human dermal fibroblasts via the interaction of beta(2) integrins on DC with Thy-1 (CD90) and ICAM-1 on fibroblasts. This induced the phenotypic maturation of DC reflected by expression of CD83, CD86, CD80, and HLA-DR in a TNF-alpha- and ICAM-1-dependent manner. Moreover, fibroblast-matured DC potently induced T cell activation reflected by CD25 expression and enhanced T cell proliferation. Together these data demonstrate that dermal fibroblasts that DC can encounter during their trafficking from skin to lymph node can act as potent regulators of DC differentiation and function, and thus may actively participate in the regulation and outcome of DC-driven cutaneous immune responses.  相似文献   

2.
RhoB affects macrophage adhesion, integrin expression and migration   总被引:1,自引:0,他引:1  
Rho GTPases regulate multiple cellular responses, including cell motility and cell cycle progression. The Rho isoform RhoB represses transformation and affects endosomal trafficking, but its effects on cell adhesion and migration have not been investigated in detail. Here we show that RhoB-null macrophages are more rounded than wild-type macrophages on fibronectin and uncoated glass, and have reduced adhesion to ICAM-1 and glass but not fibronectin. This correlated with lower cell surface expression of beta2 and beta3 integrins but not beta1 integrin. RhoB-null cells migrated faster than Wt cells on fibronectin, consistent with their smaller spread area, but slower than Wt cells on glass, reflecting their reduced adhesion. C3 transferase, which inhibits RhoA, RhoB and RhoC, induced cell spreading but this effect was reduced in RhoB-null cells. However, RhoB is not required for assembly of podosomes, which are integrin-based adhesion sites, whereas C3 transferase induced a decrease in podosomes and defects in tail retraction. Since macrophages do not express RhoC, these effects of C3 transferase are due to inhibition of RhoA rather than RhoB. Our results suggest that RhoB affects cell shape and migration by regulating surface integrin levels.  相似文献   

3.
Bone marrow-derived dendritic cell (DC) precursors migrate via the blood stream to peripheral tissues to adopt their sentinel function. To identify factors facilitating their emigration to the lung, mutant mice deficient in E-selectin, P-selectin, E/P-selectin, ICAM-1, or CD18 and their respective controls were examined. DCs and monocytes/macrophages were immunolabeled with M5/114 and MOMA-2 mAbs, respectively, and quantified morphometrically. Of these genotypes, the numbers of DC and MOMA-2+ cells were significantly less only in the lungs of CD18-/- mice by 68 and 35% in alveolar walls and by 28 and 26% in venous walls, respectively. DCs were reduced by 30 and 41% around large and small airways, respectively, but the number of MOMA-2+ cells in these locations was not significantly different from controls. Ablation of a single gene may be associated with augmented expression of other, related gene products. Therefore, we examined the expression of VCAM-1. Increased numbers of arteries exhibited continuous luminal VCAM-1 staining in both CD18-/- and ICAM-1-/- mutants. VCAM-1 expression was absent in pulmonary capillaries and unchanged in veins. These data suggest that under nonperturbing conditions, CD18-mediated adhesion is required for the full complement of DC precursors to accumulate in the lungs. However, the defect in CD18-/- mice is partial, suggesting that CD18-independent adhesion occurs. The alternative pathway may involve VLA-4/VCAM-1 in arteries and venules but not in capillaries. The smaller defect in ICAM-1-/- mice suggests that the CD11/CD18 complex recognizes ligands other than ICAM-1 at some sites.  相似文献   

4.
In vivo, eosinophils localize to airway cholinergic nerves in antigen-challenged animals, and inhibition of this localization prevents antigen-induced hyperreactivity. In this study, the mechanism of eosinophil localization to nerves was investigated by examining adhesion molecule expression by cholinergic nerves. Immunohistochemical and functional studies demonstrated that primary cultures of parasympathetic nerves express vascular cell adhesion molecule-1 (VCAM-1) and after cytokine pretreatment with tumor necrosis factor-alpha and interferon-gamma intercellular adhesion molecule-1 (ICAM-1). Eosinophils adhere to these parasympathetic neurones after cytokine pretreatment via a CD11/18-dependent pathway. Immunohistochemistry and Western blotting showed that a human cholinergic nerve cell line (IMR-32) expressed VCAM-1 and ICAM-1. Inhibitory experiments using monoclonal blocking antibodies to ICAM-1, VCAM-1, or CD11/18 and with the very late antigen-4 peptide inhibitor ZD-7349 showed that eosinophils adhered to IMR-32 cells via these adhesion molecules. The protein kinase C signaling pathway is involved in this process as a specific inhibitor-attenuated adhesion. Eosinophil adhesion to IMR-32 cells was associated with the release of eosinophil peroxidase and leukotriene C(4). Thus eosinophils adhere to cholinergic nerves via specific adhesion molecules, and this leads to eosinophil activation and degranulation; this may be part of the mechanism of eosinophil-induced vagal hyperreactivity.  相似文献   

5.
Peritoneal metastases frequently occur in different gastrointestinal cancers and have a poor prognosis. It is known that surgical injury promotes tumor growth and local recurrence rates and also the degree of surgical trauma correlated with the amount of tumor implantation into the peritoneum. The mechanism that mediates tumor cell adhesion to the mesothelium is not fully understood. This study investigates the role of ICAM-1, an important mediator of trans-mesothelial leucocyte migration, in tumor-mesothelial interactions as the initial step in the development of peritoneal recurrence using an in vitro model incorporating mesothelial cell monolayer derived from omental samples. We also investigate how the cytokines interleukins 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) modulate this process. We demonstrate that ICAM-1 blockade reduces the ability of both pancreatic and colonic cancer cell lines to adhere to the mesothelium. Preincubation of the mesothelial cell monolayer with either IL-6 or TNF-alpha enhances tumor cell adhesion, and this is associated with an increased expression of ICAM-1. Mesothelial CD44 expression, which has previously been implicated in this process, was unaffected by these cytokines. The use of an inhibitory monoclonal antibody against ICAM-1 attenuated the enhanced adhesion mediated by IL-6 or TNF-alpha. This study suggests that mesothelial ICAM-1 plays a role in the adhesion of tumor cells to the peritoneum in the development of peritoneal metastases.  相似文献   

6.
Classical cadherin adhesion molecules are fundamental determinants of cell-cell recognition that function in cooperation with the actin cytoskeleton. Productive cadherin-based cell recognition is characterized by a distinct morphological process of contact zone extension, where limited initial points of adhesion are progressively expanded into broad zones of contact. We recently demonstrated that E-cadherin ligation recruits the Arp2/3 actin nucleator complex to the plasma membrane in regions where cell contacts are undergoing protrusion and extension. This suggested that Arp2/3 might generate the protrusive forces necessary for cell surfaces to extend upon one another during contact assembly. We tested this hypothesis in mammalian cells by exogenously expressing the CA region of N-WASP. This fragment, which potently inhibits Arp2/3-mediated actin assembly in vitro, also effectively reduced actin assembly at cadherin adhesive contacts. Blocking Arp2/3 activity by this strategy profoundly reduced the ability of cells to extend cadherin adhesive contacts but did not affect cell adhesiveness. These findings demonstrate that Arp2/3 activity is necessary for cells to efficiently extend and assemble cadherin-based adhesive contacts.  相似文献   

7.
The processes leading to systemic dissemination of the obligate intracellular parasite Toxoplasma gondii remain unelucidated. In vitro studies on human and murine dendritic cells (DC) revealed that active invasion of DC by Toxoplasma induces a state of hypermotility in DC, enabling transmigration of infected DC across endothelial cell monolayers in the absence of chemotactic stimuli. Infected DC exhibited upregulation of maturation markers and co-stimulatory molecules. While modulation of cell adhesion molecules CD11/CD18 was similar for Toxoplasma-infected DC and lipopolysaccharide (LPS)-matured DC, Toxoplasma-infected DC did not exhibit upregulation of CD54/ICAM-1. Induction of host cell migration in vitro required live intracellular parasite(s) and was inhibited by uncoupling the Gi-protein signalling pathway with pertussis toxin, but did not depend on CCR5, CCR7 or Toll/interleukin-1 receptor signalling. When migration of Toxoplasma-infected DC was compared with migration of LPS-stimulated DC in vivo, similar or higher numbers of Toxoplasma-infected DC reached the mesenteric lymph nodes and spleen respectively. Adoptive transfer of Toxoplasma-infected DC resulted in more rapid dissemination of parasites to distant organs and in exacerbation of infection compared with inoculation with free parasites. Altogether, these findings show that Toxoplasma is able to subvert the regulation of host cell motility and likely exploits the host's natural pathways of cellular migration for parasite dissemination.  相似文献   

8.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

9.
Different molecules are involved in the recruitment of leukocytes during inflammation. The aim was to investigate (i) the contribution of acinar cells to the overall production of ICAM-1 and (ii) the kinetics of leukocyte CD11b/CD18 expression during acute pancreatitis (AP) induced by bile-pancreatic duct obstruction (BPDO) to evaluate the contribution of both molecules to leukocyte homing. The role of reactive oxygen species (ROS) as mediators in the expression of ICAM-1 and CD11b/CD18 was examined by using N-acetylcysteine (NAC) as an antioxidant treatment. By mechanisms resistant to NAC treatment, acinar cells were able to produce ICAM-1 at first onset of AP; other cell sources contribute to maintaining increased ICAM-1 plasma levels during AP. By contrast, CD11b/CD18 was overexpressed in leukocytes in the course of AP by oxidant-dependent mechanisms. Since NAC treatment reduced neutrophil infiltration in the pancreas, we conclude that CD11b/CD18 over-expression is required for leukocyte recruitment; however, other adhesion molecules in addition to ICAM-1 seem to contribute to leukocyte homing during BPDO-induced AP.  相似文献   

10.
Podosomes are actin- and fimbrin-containing adhesions at the leading edge of macrophages. In cells transfected with beta-actin-ECFP and L-fimbrin-EYFP, quantitative four-dimensional microscopy of podosome assembly shows that new adhesions arise at the cell periphery by one of two mechanisms; de novo podosome assembly, or fission of a precursor podosome into daughter podosomes. The large podosome cluster precursor also appears to be an adhesion structure; it contains actin, fimbrin, integrin, and is in close apposition to the substratum. Microtubule inhibitors paclitaxel and demecolcine inhibit the turnover and polarized formation of podosomes, but not the turnover rate of actin in these structures. Because daughter podosomes and podosome cluster precursors are preferentially located at the leading edge, they may play a critical role in continually generating new sites of cell adhesion.  相似文献   

11.
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.  相似文献   

12.
Tumor angiogenesis and immune response have in common to be cell recognition mechanisms, which are based on specific adhesion molecules and dependent on nitric oxide (NO). The aim of the present study is to deepen the mechanisms of angiogenesis and inflammation regulation by NO to find out the molecular regulation processes that govern endothelial cell permeability and leukocyte transmigration.Effects of NO, either exogenous or produced in hypoxic conditions, were studied on microvascular endothelial cells from skin and lymph node because of their strong involvement in melanoma progression. We found that NO down-regulation of pseudo-vessel formation was linked to a decrease in endothelial cell ability to adhere to each other which can be explain, in part, by the inhibition of PECAM-1/CD31 expression. On the other hand, NO was shown to be able to decrease leukocyte adhesion on an endothelial monolayer, performed either in static or in rolling conditions, and to modulate differentially CD34, ICAM-1/CD54, ICAM-2/CD102 and VCAM-1/CD106 expression.In conclusion, during angiogenesis and leukocyte recruitment, NO regulates cell interactions by controlling adhesion molecule expression and subsequently cell adhesion. Moreover, each endothelial cell type presents its own organospecific response to NO, reflecting the functions of the tissue they originate from.  相似文献   

13.
Activation of T cells often requires both activation signals delivered by ligation of the TCR and those resulting from costimulatory interactions between certain T cell surface accessory molecules and their respective counter-receptors on APC. CD11a/CD18 complex on T cells modulate the activation of T cells by interacting with its counter-receptors intracellular adhesion molecule (ICAM-1) (CD54) and/or ICAM-2 on the surface of APC. The costimulatory ability of ICAM-1 has been demonstrated. Using a soluble ICAM-2 Ig fusion protein (receptor globulin, Rg) we demonstrate the costimulatory effect of ICAM-2 during the activation of CD4+ T cells. When coimmobilized with anti-TCR-1 mAb ICAM-2 Rg induced vigorous proliferative response of CD4+ T cells. This costimulatory effect of ICAM-2 was dependent on its coimmobilization with mAb directed at the CD3/TCR complex but not those directed at CD2 or CD28. Both resting as well as Ag-primed CD4+ T cells responded to the costimulatory effects of ICAM-2. The addition of mAb directed at the CD11a or CD18 molecules almost completely inhibited the responses to ICAM-2 Rg. These results are consistent with the role of CD11a/CD18 complex as a receptor for ICAM-2 mediating its costimulatory effects. Stimulation of T cells with coimmobilized anti-TCR-1 and ICAM-2 resulted in the induction of IL-2R (CD25), and anti-Tac (CD25) mAb inhibited this response suggesting the contribution of endogenously synthesized IL-2 during this stimulation. These results demonstrate that like its homologue ICAM-1, ICAM-2 also exerts a strong costimulatory effect during the TCR-initiated activation of T cells. The costimulatory effects generated by the CD11a/CD18:ICAM-2 interaction may be critical during the initiation of T cell activation by ICAM-1low APC.  相似文献   

14.
Although ligation of the CD3/TCR complex initiates an activation signal in T cells, additional costimulatory signals generated during cell-to-cell interactions with APC transduced via ligation of CD11a/CD18 and CD28 by their specific counter-receptor intercellular adhesion molecule (ICAM)-1 and B7, respectively, are required for optimal T cell proliferation and cytokine synthesis. Using soluble IgC gamma 1 fusion proteins of these costimulatory counter-receptors, we have recently shown that unactivated resting CD4+ T cells and Ag-primed CD4+ T cells differ in their response to the costimulation by ICAM-1 and B7. Preferential proliferative responses of resting T and Ag-primed T cells to ICAM-1 and B7, respectively, prompted us to speculate that ICAM-1-induced signals may regulate coupling of the CD28 signaling pathway. Furthermore, both B7 and ICAM-1 are co-expressed on APC and thus, may co-regulate activation-driven maturation of T cells. In this study, we have examined regulatory effects of IgC gamma 1 fusion proteins of B7, ICAM-1, and ICAM-2 (a homologue of ICAM-1) on each other's costimulation. We first demonstrate that TCR-directed costimulation of resting CD4+ T cells with ICAM-1 (ICAM-1 priming) but not ICAM-2 induces increased responsiveness to B7. Priming of CD4+ T cells with ICAM-1 induced higher expression of both CD18 and CD28 than that with either B7 or ICAM-2. Cross-linking of CD28 induced faster and significantly higher cytoplasmic free calcium mobilization response in ICAM-1-primed CD4+ T cells than in resting, B7-primed, or ICAM-2-primed CD4+ T cells. B7 synergized with ICAM-1 but not ICAM-2 to augment proliferative responses of not only resting CD4+ T cells but also those that had been primed with either ICAM. Unlike resting or ICAM-2-primed CD4+ T cells, ICAM-1-primed CD4+ T cells efficiently proliferated in response to the synergistic costimulation of B7 and ICAM-2. In contrast, both ICAM-1 and ICAM-2 inhibit B7-driven proliferation of Ag-primed CD4+ T cells. Thus, B7 and ICAM-1 exert contrasting regulatory effects on the proliferation of CD4+ T cells depending on their state of activation-induced maturation.  相似文献   

15.
Regulatory T cells (Tregs) must express appropriate skin-homing adhesion molecules to exert suppressive effects on dermal inflammation. However, the mechanisms whereby they control local inflammation remain unclear. In this study we used confocal intravital microscopy in wild-type and Foxp3-GFP mice to examine adhesion of effector T cells and Tregs in dermal venules. These experiments examined a two-challenge model of contact sensitivity (CS) in which Treg abundance in the skin progressively increases during the course of the response. Adhesion of CD4(+) T cells increased during CS, peaking 8-24 h after an initial hapten challenge, and within 4 h of a second challenge. At these time points, 40% of adherent CD4(+) T cells were Foxp3(+) Tregs. CD4(+) T cell adhesion was highly dependent on ICAM-1, and consistent with this finding, anti-ICAM-1 prevented Treg adhesion. Skin TGF-β levels were elevated in skin during both challenges, in parallel with Treg adhesion. In the two-challenge CS model, inhibition of ICAM-1 eliminated Treg adhesion, an effect associated with a significant increase in neutrophil adhesion. Similarly, total CD4(+) T cell depletion caused an increase in adhesion of CD8(+) T cells. Because Treg adhesion was restricted by both of these treatments, these experiments suggest that adherent Tregs can control adhesion of proinflammatory leukocytes in vivo. Moreover, the critical role of ICAM-1 in Treg adhesion provides a potential explanation for the exacerbation of inflammation reported in some studies of ICAM-1-deficient mice.  相似文献   

16.
Selectin family members largely mediate initial tethering and rolling of leukocytes on vascular endothelium, whereas integrin and Ig family members are essential for leukocyte firm adhesion. To quantify functional synergy between L-selectin and Ig family members during leukocyte rolling, the EA.hy926 human vascular endothelial line was transfected with either fucosyltransferase VII (926-FtVII) cDNA to generate L-selectin ligands alone or together with ICAM-1 cDNA (926-FtVII/ICAM-1). The ability of transfected 926 cells to support human leukocyte interactions was assessed in vitro using parallel plate flow chamber assays. Lymphocyte rolling on 926-FtVII cells was increased by approximately 70% when ICAM-1 was expressed at physiological levels. Although initial tether formation was similar for both cell types, lymphocyte rolling was 26% slower on 926-FtVII/ICAM-1 cells. Pretreatment of lymphocytes with an anti-CD18 mAb eliminated the increase in rolling, and all rolling was blocked by anti-L-selectin mAb. In addition, rolling velocities of lymphocytes from CD18-hypomorphic mice were 48% faster on 926-FtVII/ICAM-1 cells, with a similar reduction in rolling frequency relative to wild-type lymphocytes. CD18-hypomorphic lymphocytes also showed an approximately 40% decrease in migration to peripheral and mesenteric lymph nodes during in vivo migration assays compared with wild-type lymphocytes. Likewise, wild-type lymphocyte migration to peripheral lymph nodes was reduced by approximately 50% in ICAM-1(-/-) recipient mice. Similar to human lymphocytes, human neutrophils showed enhanced rolling interactions on 926-FtVII/ICAM-1 cells, but also firmly adhered. Thus, in addition to mediating leukocyte firm adhesion, CD18 integrin/ICAM-1 interactions regulate leukocyte rolling velocities and thereby optimize L-selectin-mediated leukocyte rolling.  相似文献   

17.
Mechanical deformation of polymorphonuclear leukocytes (PMN) changes their expression of the surface adhesion molecule CD11b/CD18. We tested the hypothesis that mechanical deformation of PMN enhances their adhesiveness. Purified human PMN were deformed through either 5- or 3-microm polycarbonate membrane filters and allowed to adhere to 96-well plates coated with human recombinant intercellular adhesion molecule-1 (ICAM-1). Flow cytometric studies showed that deformation of PMN increased CD11b/CD18 expression (P < 0.01). PMN adhesion to ICAM-1-coated plates was dependent on the magnitude of cell deformation (5 microm, 63.8 +/- 8.1%, P < 0.04; 3 microm, 232.4 +/- 20.9%, P < 0.01). Priming of PMN (0.5 nM N-formyl-methionyl-leucyl-phenylalanine) before deformation (5 microm) increased PMN adhesion (63.8 +/- 8.1 vs. 105.3 +/- 16.4%; P < 0.04). Stimulation (5% zymosan-activated plasma) of PMN after deformation resulted in increased adhesion, and the degree of increase was dependent on the magnitude of PMN deformation (stimulation, 50.6 +/- 4%; 5-microm filtration and stimulation, 62.9 +/- 6.6%; 3-microm filtration and stimulation, 249.9 +/- 24.2%; P < 0.01). This study shows that mechanical deformation of PMN causes an increase in PMN adhesiveness to ICAM-1 that was enhanced by both priming of PMN before deformation and stimulation after cell deformation.  相似文献   

18.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

19.
Podosomes are adhesion structures characteristic of the myeloid cell lineage, encompassing osteoclasts, dendritic cells and macrophages. Podosomes are actin-based structures that are dynamic and capable of self-organization. In particular in the osteoclast, podosomes densely pack into a thick ring called the sealing zone. This adhesion structure is typical of osteoclasts and necessary for the resorption of the bone matrix. We thought to explore in more details the role of podosomes during osteoclast differentiation and migration. To this end, we made from soft to stiff substrates that had not been functionalized with extracellular matrix proteins. Such substrates did not support podosome formation in osteoclasts. With such devices, we could show that integrin activation was sufficient to drive podosome assembly, in a substrate stiffness independent fashion. We additionally report here that osteoclast differentiation is a podosome-independent process. Finally, we show that osteoclasts devoid of podosomes can migrate efficiently. Our study further illustrates the great capacity of myeloid cells to adapt to the different environments they encounter during their life cycle.  相似文献   

20.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号